Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For a titration to be effective, the reaction must be rapid and the yield of the reaction must essentially be 100%.

Is \({K_c} > 1,\; < 1\), or \( \approx 1\) for a titration reaction?

Short Answer

Expert verified

As titration reactions are rapid and yield is almost 100%, so \({K_c} > 1.\)

Step by step solution

01

Definition of Titration reactions

The term titration reaction refers to a reaction in which one substance is entirely neutralized by another substance. This titration could be an acid-base titration, a redox titration, or something else entirely.

02

Find the reaction yield

Let's consider an acid base titration reaction as

\(\begin{aligned}{}{\rm{HCl}}(aq) + {\rm{NaOH}}(aq) \to {\rm{NaCl}}(aq) + {{\rm{H}}_2}{\rm{O}}(aq)\\{\rm{HCl}}(aq) + {\rm{NaOH}}(aq) \to {\rm{NaCl}}(aq) + {{\rm{H}}_2}{\rm{O}}(aq)\end{aligned}\)

This reaction has a 100% yield, which means that all of the starting materials have been transformed to products and there are no leftovers. So,\({K_c} > 1\).

Thus,\({K_c} > 1\)for all the titration reactions which have 100% yield.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine if the following system is at equilibrium. If not, in which direction will the system need to shift to reach equilibrium?

\({\rm{S}}{{\rm{O}}_2}{\rm{C}}{{\rm{l}}_2}(g)\rightleftharpoons {\rm{S}}{{\rm{O}}_2}(g) + {\rm{C}}{{\rm{l}}_2}(g)\)

\(\left( {{\rm{S}}{{\rm{O}}_2}{\rm{C}}{{\rm{l}}_2}} \right) = 0.12\;{\rm{M}},\;\left( {{\rm{C}}{{\rm{l}}_2}} \right) = 0.16\;{\rm{M and }}\left( {{\rm{S}}{{\rm{O}}_2}} \right) = 0.050\;{\rm{M}}.\;{K_c}\) for the reaction is 0.078.

Question: Antimony pentachloride decomposes according to this equation:

An equilibrium mixture in a 5.00-L flask at 4480C contains 3.85 g of \({\rm{SbC}}{{\rm{l}}_5}\),9.14 g of \({\rm{SbC}}{{\rm{l}}_3}\)and 2.84 g of \({\rm{C}}{{\rm{l}}_2}\).How many grams of each will be found if the mixture is transferred into a 2.00-L flask at the same temperature?

How will an increase in temperature affect each of the following equilibria? How will a decrease in the volume of the reaction vessel affect each?

a. \(2{\rm{N}}{{\rm{H}}_3}(g)\rightleftharpoons {{\rm{N}}_2}(g) + 3{{\rm{H}}_2}(g)\) \({\rm{\Delta }}H = 92{\rm{kJ}}\)

b. \({{\rm{N}}_2}(g) + {{\rm{O}}_2}(g)\rightleftharpoons 2{\rm{NO}}(g)\) \({\rm{\Delta }}H = 181{\rm{kJ}}\)

c. \(2{{\rm{O}}_3}(g)\rightleftharpoons 3{{\rm{O}}_2}(g)\) \({\rm{\Delta }}H = - 285{\rm{kJ}}\)

d.\({\rm{CaO(s) + C}}{{\rm{O}}_{\rm{2}}}{\rm{(g)}}\rightleftharpoons {\rm{CaC}}{{\rm{O}}_{\rm{3}}}{\rm{(s)}}\) \({\rm{\Delta }}H = - 176{\rm{kJ}}\)

For which of the reactions in Exercise 13.16 does \({K_c}\) (calculated using concentrations) equal \({K_p}\)(calculated using pressures)?

(a) \({N_2}(g) + 3{H_2}(g)\rightleftharpoons 2N{H_3}(g)\)

(b) \(4N{H_3}(g) + 5{O_2}(g)\rightleftharpoons 4NO(g) + 6{H_2}O(g)\)

(c) \({N_2}{O_4}(g)\rightleftharpoons 2N{O_2}(g)\)

(d) \(C{O_2}(g) + {H_2}(g)\rightleftharpoons CO(g) + {H_2}O(g)\)

(e) \(N{H_4}Cl(s)\rightleftharpoons N{H_3}(g) + HCl(g)\)

(f) \(2\;Pb{\left( {N{O_3}} \right)_2}(s)\rightleftharpoons 2PbO(s) + 4N{O_2}(g) + {O_2}(g)\)

(g) \(2{H_2}(g) + {O_2}(g)\rightleftharpoons 2{H_2}O(l)\)

(h) \({S_8}(g)\rightleftharpoons 8\;S(g)\)

Question: Calculate the number of grams of HI that are at equilibrium with 1.25 mol of H2 and 63.5 g of iodine at 448ยฐC.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free