Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Most barium compounds are very poisonous; however, barium sulfate is often administered internally as an aid in the X-ray examination of the lower intestinal tract (Figure 15.4). This use of \(BaS{O_4}\) is possible because of its low solubility. Calculate the molar solubility of \(BaS{O_4}\)and the mass of barium present in \(1.00\;L\)of water saturated with\(BaS{O_4}\).

Short Answer

Expert verified

Molar solubility of \({\rm{BaS}}{{\rm{O}}_4}\)is \(1.52 \cdot {10^{ - 4}}{\rm{M}}\) for both \(\left[ {{\rm{B}}{{\rm{a}}^{2 + }}} \right]\)and \(\left[ {{\rm{SO}}_4^{2 - }} \right]\)

Mass of barium in 11 is\(0.02\;{\rm{g}}\).

Step by step solution

01

To calculate the molar solubility of \(BaS{O_4}\)

Expression for solubility of the reaction: is:

\({{\rm{K}}_{{\rm{sp}}}} = {\left[ {{{\rm{A}}^{{\rm{m + }}}}} \right]^{\rm{x}}}{\left[ {\;{{\rm{B}}^{{\rm{n + }}}}} \right]^{\rm{y}}}\)

For \({\rm{BaS}}{{\rm{O}}_4},\;{{\rm{K}}_{{\rm{sp}}}} = 2.3 \cdot {10^{ - 8}}({\rm{a}}\) known constant, Appendix\({\rm{J}}\))

Let's calculate Molar solubility of\({\rm{BaS}}{{\rm{O}}_4}\)and the Mass of barium in\(1\;{\rm{L}}\)of water saturated with\({\rm{BaS}}{{\rm{O}}_4}\).

Dissociation of \({\rm{BaS}}{{\rm{O}}_4}:{\rm{BaS}}{{\rm{O}}_4}({\rm{s}}){\rm{B}}{{\rm{a}}^{2 + }}({\rm{aq}}) + {\rm{SO}}_4^{2 - }({\rm{aq}})\)

\({{\rm{K}}_{{\rm{sp}}}} = {\rm{x}} \cdot {\rm{x}}\)

\(2.3 \cdot {10^{ - 8}} = {{\rm{x}}^2}\)

\({\rm{x}} = 1.52 \cdot {10^{ - 4}}{\rm{M}}\)

Molarity, represented by M or [ ] brackets, expresses a number of moles of a solute per 1 liter of a solution.

Molar solubility of \({\rm{BaS}}{{\rm{O}}_4}\) is \(1.52 \cdot {10^{ - 4}}{\rm{M}}\) for both \(\left[ {{\rm{B}}{{\rm{a}}^{2 + }}} \right]\)and\(\left[ {{\rm{SO}}_4^{2 - }} \right]\).

Step 2: To find the mass of the barium

Mass of barium:

\({\rm{ Molarity }} = \frac{{{\rm{ moles }}}}{{{\rm{ litres }}}} = \frac{{{\rm{ mass }}}}{{{\rm{ molar mass }}x{\rm{ litres }}}}\)

Mass = molarity \( \times \) molar mass \( \times \) liters

The molar mass of Ba is \(137.33\;{\rm{g}}/{\rm{mol}}\)as we know from the periodic table of elements. If we put that into the above formula:

Mass of \({\rm{Ba}} = 1.52 \cdot {10^{ - 4}}\;{\rm{mol}}/{\rm{l}} \cdot 137.33\;{\rm{g}}/{\rm{mol}} \cdot 1{\rm{l}} = {\bf{0}}.{\bf{02}}{\rm{g}}{\bf{Ba}}\)

Finally we get,

Molar solubility of \({\rm{BaS}}{{\rm{O}}_4}\)is \(1.52 \cdot {10^{ - 4}}{\rm{M}}\) for both \(\left[ {{\rm{B}}{{\rm{a}}^{2 + }}} \right]\)and \(\left[ {{\rm{SO}}_4^{2 - }} \right]\)

Mass of barium in 11 is\(0.02\;{\rm{g}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free