Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate the \(pH\) at the following points in a titration of \(40\;mL(0.040\;L)\) \(of 0.100 M\) barbituric acid (\({K_a} = 9.8\)\( \times 1{0^{ - 5}}\) ) with\(0.100MKOH\) .

(a) no \(KOH\) added

(b) \(20\;mL of KOH\) solution added

(c) \(39\;mL\) of \(KOH\) solution added

(d) \(40\;mL\) of \(KOH\) solution added

(e) \(41\;mL\) of \(KOH\) solution added

Short Answer

Expert verified

a) 2.51

b) 4.01

c) 5.60

d) 8.35

e) 11.09

Step by step solution

01

To find the pH value in no KOH added:

- We have\(0.040\;L\)of\(0.100M{C_4}{H_4}\;{N_2}{O_3}\)

-\({K_a}\)of\({C_4}{H_4}\;{N_2}{O_3}\)\(is\)\({K_a}\)= 9.8 .\(1{0^{ - 5}}\)

(a)Let us calculate the\(pH\)of a given solution

\(|{C_4}{H_{{4_{}}}}{N_2}{O_3}(aq) \to \)

\({H_3}{O^ + }\left( {aq} \right)\)

\({C_4}{H_4}{N_2}{O_3}^{ - )}(aq)\)

Initial (M)

0.100

0

0

Change (M)

-X

+X

+X

Equilibrium (M)

0.100-X

X

X

\(\begin{array}{l}{K_a} = \frac{{\left[ {1{I_3}{O^ + }} \right] \times \left[ {{C_4}{\mu _3}\;{N_2}O_3^ - } \right]}}{{\left[ {{C_4}{H_4}\;{N_2}{O_3}} \right]}}\\9.8 \times 1{0^{ - 5}} = \frac{{x \times x}}{{0.100 - x}}\\{x^2} = 9.8 \times 1{0^{ - 6}} - 9.8 \times 1{0^{ - 5}}x\\0 = {x^2} + 9.8 \times 1{0^{ - 5}}x - 9.8 \times 1{0^{ - 6}}\\x = 0.00308M\\\left[ {{H_3}{O^ + }} \right] = 0.00308M\end{array}\)

\(Therefore,thepH valueis\)

\(\begin{array}{c}pH = - log\left[ {{H_3}{O^ + }} \right]\\ = - log[0.00308]\\ = 2.51\end{array}\)

02

To find the pH value in 20ml of KOH solution added:

- We have\(0.040\;L\)of\(0.100M{C_4}{H_4}\;{N_2}{O_3}\)

- and\(20\;mL\)of\(0.100MKOH\)the solution is added

- So, the new volume of a mixture is\(0.060\;L(60\;mL)\)

Let us calculate the\(pH\)value

The concentrations of\({C_4}{H_4}\;{N_2}{O_3}\)and\(KOH\)in a mixture is

\(\begin{array}{l}\left[ {{C_4}{H_4}{N_2}{O_3}} \right] = \frac{{0.040L \times 0.100M}}{{0.060L}} = 0.06667M\\(KOH] = \frac{{0.020L \times 0.100M}}{{0.060L}} = 0.03333M\end{array}\)

\({C_4}{H_4}{N_2}{O_3}(aq)\)

\(O{H^ - }(aq) \to \)

\({C_4}{H_4}{N_2}{O_3}^ - (aq) + \)

\({H_2}O(aq)\)

Initial (M)

0.06667

0.03333

0

/

Change (M)

-0.03333

-0.03333

+0.03333

/

Equilibrium (M)

-0.03333

0

+0.03333

/

03

Step:3

So, we are left with\(0.03333M{C_4}{H_4}\;{N_2}{O_3}and0.03333M{C_4}{H_3}\;{N_2}O_3^ - \)

\(|{C_4}{H_{{4_{}}}}{N_2}{O_3}(aq)/rightleftheadpoons\)

\({H_3}{O^ + }\left( {aq} \right)\)

\({C_4}{H_4}{N_2}{O_3}^{ - )}(aq)\)

Initial (M)

0.03333

0

0.03333

Change (M)

-X

+X

+X

Equilibrium(M)

0.03333-X

X

0.03333+X

\(\begin{array}{l}{K_a} = \frac{{\left[ {1{1_3}{O^ + }} \right] \times \left[ {{C_4}{H_3}\;{N_2}{O_3}} \right]}}{{\left[ {{C_4}H{I_4}\;{N_2}{O_3}} \right]}}\\9.8 \times 1{0^{ - 5}} = \frac{{x \times (0.03333 + x)}}{{0.03333 - x}}\\ Since {K_a} is smaller than 1{0^4}, we will assume that 0.03333 + x\gg 0.03333 and 0.03333 - x\gg 0.03333\\9.8 \times 1{0^{ - 5}} = \frac{{x \times 0.03333}}{{0.03333}}\\x = 9.8 \times 1{0^{ - 5}}\\\left[ {{H_3}{O^ + }} \right] = 9.8 \times 1{0^{ - 5}}M\end{array}\)

Therefore, the \(pH\) value is

\(\begin{array}{c}pH = - log\left[ {{H_3}{O^ + }} \right]\\ = - log\left[ {9.8 \times 1{0^{ - 5}}} \right]\\ = 4.01\end{array}\)

04

To find the pH value in 39ml KOH solution added:

(c)

- We have\(0.040\;L\)of\(0.100M{C_4}{H_4}\;{N_2}{O_3}\)

- and\(39\;mL\)of\(0.100MKOH\)solution is added

- So, the new volume of a mixture is\(0.079\;L(79\;mL)\)

Let us calculate the\(pH\)value

The concentrations of\({C_4}{H_4}\;{N_2}{O_3}\)\(andKOH\)in a mixture is

\(\begin{array}{l}\left[ {{C_4}{H_4}{N_2}{O_3}} \right] = \frac{{0.040\;L \times 0.100M}}{{0.079\;L}} = 0.0506M\\(KOH] = \frac{{0.039\;L \times 0.100M}}{{0.079\;L}} = 0.04937M\end{array}\)

\(|{C_4}{H_{{4_{}}}}{N_2}{O_3}(aq) \to \)

\({H_3}{O^ + }\left( {aq} \right)\)

\({C_4}{H_4}{N_2}{O_3}^{ - )}(aq)\)

\({H_2}O(aq)\)

Initial (M)

0.0506

0.04937

0

/

Change (M)

-0.04937

-0.04937

+0.04937

/

Equilibrium(M)

0.00127

0

0.4937

/

05

Step 5: 

So, we are left with\(0.00127M{C_4}{H_4}\;{N_2}{O_3}and0.04937M{C_4}{H_3}\;{N_2}O_3^ - \)

\(|{C_4}{H_{{4_{}}}}{N_2}{O_3}(aq)/rightleftheadpoons\)

\({H_3}{O^ + }\left( {aq} \right)\)

\({C_4}{H_4}{N_2}{O_3}^{ - )}(aq)\)

Initial (M)

0.00127

0

0.004937

Change (M)

-X

+X

+X

Equilibrium(M)

0.00127-X

X

0.04937+X

\(\begin{array}{l}{K_a} = \frac{{\left[ {{H_3}{O^ + }} \right] \times \left[ {C{H_4}{H_3}\;{N_2}{O_3}} \right]}}{{\left[ {{C_4}{H_4}\;{N_2}{O_3}} \right]}}\\9.8 \times 1{0^{ - 5}} = \frac{{x \times (0.04937 + x)}}{{0.00127 - x}}Since{K_a}issmallerthan1{0^4}wewillassumethan,\\0.04937 + x\gg 0.04937and0.00127 - x\gg 0.00127\\9.8 \times 1{0^{ - 5}} = \frac{{x \times 0.04937}}{{0.00127}}\\x = 2.52 \times 1{0^{ - 6}}\\\left| {{H_3}{O^ + }} \right| = 2.52 \times 1{0^{ - 6}}M\end{array}\)

Therefore, the \(pH\) value is

\(\begin{array}{c}pH = - log\left[ {{H_3}{O^ + }} \right]\\ = - log\left[ {2.52 \times 1{0^{ - 6}}} \right]\\ = 5.60\end{array}\)

06

To find the PH value of 40ml of KOH solution added:

- We have\(0.040\;L\)of\(0.100M{C_4}{H_4}\;{N_2}{O_3}\)

- and\(40\;mL\)of\(0.100MKOH\)solution is added

- So, the new volume of a mixture is\(0.080\;L(80\;mL)\)

Let us calculate the\(pH\)value

The concentrations of\({C_4}{H_4}\;{N_2}{O_3}\)and\(KOH\)in a mixture is

\(\begin{array}{l}\left[ {{C_4}{H_4}\;{N_2}{O_3}} \right] = \frac{{0.040\;L \times 0.100M}}{{0.080L}} = 0.05\\(KOH] = \frac{{0.040\;L \times 0.100M}}{{0.080L}} = 0.05M\end{array}\)

\(|{C_4}{H_{{4_{}}}}{N_2}{O_3}(aq) \to \)

\({H_3}{O^ + }\left( {aq} \right)\)

\({C_4}{H_4}{N_2}{O_3}^{ - )}(aq)\)

\({H_2}O(aq)\)

Initial (M)

0.05

0.05

0

/

Change (M)

-0.05

-0.05

0

/

Equilibrium(M)

0

0

0.05

/

07

Step 7: 

So, we are left with\(0.05M{C_4}{H_3}\;{N_2}O_3^ - \)

-\({K_b}of{C_4}{H_3}\;{N_2}O_3^ - is{K_b} = \frac{{{K_{11}}}}{{{K_a}}} = \frac{{1.1{0^{ - 14}}}}{{9.8 \times 1{0^{ - 3}}}} = 1.02 \times 1{0^{ - 10}}\)

\(|{C_4}{H_{{4_{}}}}{N_2}{O_3}(aq)/rightleftheadpoons\)

\({H_3}{O^ + }\left( {aq} \right)\)

\({C_4}{H_4}{N_2}{O_3}^{ - )}(aq)\)

Initial (M)

0.05

0

0

Change (M)

-X

+X

+X

Equilibrium(M)

0.05

X

X

\(\begin{array}{l}{K_b} = \frac{{\left[ {{C_1}{H_1}{N_2}{O_3}} \right] \times [OH]}}{{\left[ {{C_4}{H_3}{N_2}O_3^ - } \right]}}\\1.02 \times 1{0^{ - 10}} = \frac{{x \times x}}{{0.05 - x}} Since {K_a} is smaller than 1{0^4} : we will assume that 0.05 + x\gg 0.05\\1.02 \times 1{0^{10}} = \frac{{x \times x}}{{0.05}}\\x = 2.26 \times 1{0^{ - 6}}\\\left[ {O{H^ - }} \right] = 2.26 \times 1{0^{ - 6}}M\end{array}\)Therefore, the\(pH\)value is

\(\begin{array}{c}pOH = - log\left[ {O{H^ - }} \right]\\ = - log\left[ {2.26 \times 1{0^{ - 6}}} \right]\\ = 5.65\\pH = 14 - 5.65\\ = 8.35\end{array}\)

08

To find the pH value of 41ml of KOH solution added:

- We have\(0.040\;L\)of\(0.100M{C_4}{H_4}\;{N_2}{O_3}\)

- and\(41\;mL\)of\(0.100MKOH\)solution is added

- So, the new volume of a mixture is\(0.081\;L(81\;mL)\)

Let us calculate the\(pH\)value

The concentrations of\({C_4}{H_4}\;{N_2}{O_3}\) and\(KOH\)in a mixture is

\(\begin{array}{l}\left[ {{C_4}{H_4}\;{N_2}{O_3}} \right] = \frac{{0.040\;L \times 0.100M}}{{0.081\;L}} = 4.938 \times 1{0^{ - 2}}M\\(KOH] = \frac{{0.041\;L \times 0.100M}}{{0.081L}} = 5.062 \times 1{0^{ - 2}}M\end{array}\)

\(|{C_4}{H_{{4_{}}}}{N_2}{O_3}(aq) \to \)

\({H_3}{O^ + }\left( {aq} \right)\)

\({C_4}{H_4}{N_2}{O_3}^{ - )}(aq)\)

\({H_2}O(aq)\)

Initial (M)

\(4.938.1{0^{ - 2}}\)

0.05

0

/

Change (M)

-\(4.938.1{0^{ - 2}}\)

-\(4.938.1{0^{ - 2}}\)

+\(4.938.1{0^{ - 2}}\)

/

Equilibrium(M)

0

\(1.24.1{0^{ - 3}}\)

\(4.938.1{0^{ - 2}}\)

/

Now we have an excess of\(KOH\)

Therefore, the\(pH\)of a mixture is

\(\begin{array}{c}pOH = - log\left[ {O{H^ - }} \right]\\ = - log\left[ {1.24 \times 1{0^{ - 3}}} \right]\\ = 2.91\\pH = 14 - 2.91\\ = 11.09\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free