Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate the volume of 1.50MCH3CO2H required to dissolve a precipitate composed of 350mg each of and CaCO3,SrCO3,BaCO3

Short Answer

Expert verified

The volume of the dissolve precipitate is 10.19mL.

Step by step solution

01

Define the concentration of the solution

A solution concentration is a measure of the quantity of solute that has been dissolved in a given quantity of solvent or solution. One that contains a relatively high volume of dissolved solute is a concentrated solution

02

Calculating the volume of the dissolved precipitate

calculate the volume of 1.50MCH3CO2H required to dissolve a precipitate composed of

350mg of CaCO3(0.35g)

350mg ofSrCO3(0.35g)

350mg ofBaCO3 (0.35g)

\begin{aligned}{{n_{{\rm{CaC}}{{\rm{O}}_3}}}=\frac{{0.35{\rm{g}}}}{{{M_{CaC{O_3}}}}}=\frac{{0.35{\rm{g}}}}{{100.0869{\rm{g}}/{\rm{mol}}}}=3.50\cdot{{10}^{-3}}{\rm{mol}}}\\{{n_{SrC{O_3}}}=\frac{{0.35g}}{{{M_{SrC{O_3}}}}}=\frac{{0.35{\rm{g}}}}{{147.63{\rm{g}}/{\rm{mol}}}}=2.37\cdot{{10}^{-3}}{\rm{mol}}}\\{{n_{{\rm{BaC}}{{\rm{O}}_3}}}=\frac{{0.35{\rm{g}}}}{{{M_{BaC{\rm{C}}{{\rm{O}}_3}}}}}=\frac{{0.35{\rm{g}}}}{{197.34{\rm{g}}/{\rm{mol}}}}=1.77\cdot{{10}^{-3}}{\rm{mol}}}\end{aligned}

03

The reaction of the solution

The total number of moles of ion, that will react is

\[{n_{{\rm{C}}{{\rm{O}}_3}^{2 - }}}={n_{{\rm{CaC}}{{\rm{O}}_3}}}+{n_{{\rm{SrC}}{{\rm{O}}_3}}}+{n_{{\rm{BaC}}{{\rm{O}}_3}}}=7.64\cdot{10^{-3}}{\rm{mol}}\]

The reaction betweenCO32 – CH3CO2H.

CO32- (aq) + CH3CO2H(aq) ⇌ HCO3- (aq) + CH3CO2-

\[{K_c}=\frac{{\left[{HC{O_3}-}\right]\cdot\left[{C{H_3}CO_2^-}\right]}}{{\left[{C{O_3}^{2-}}\right]\cdot\left[{C{H_3}C{O_2}H}\right]}}\]

\[{K_c}=\frac{{\left[{HC{O_3}-}\right]\cdot\left[{C{H_3}CO_2^-}\right]}}{{\left[{C{O_3}^{2-}}\right]\cdot\left[{C{H_3}C{O_2}H}\right]}}\]

04

 Acetic acid dissolution

let us take a look at acetic acid dissociation

CH3CO2H (aq) + H2O ⇌ H3O+ (aq) + CH3 CO2- (aq)

\[{{\rm{K}}_a}=\frac{{\left[ {{{\rm{H}}_3}{{\rm{O}}^+}}\right]\cdot\left[{{\rm{C}}{{\rm{H}}_3}{\rm{CO}}_2^-}\right]}}{{\left[{{\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H}}}\right]}}=1.8\cdot{10^{-5}}\]

\[\left[ {{\rm{C}}{{\rm{H}}_3}{\rm{CO}}_2^-}\right]=\frac{{1.8\cdot{{10}^{-5}}\cdot\left[{{\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H}}}\right]}}{{\left[{{{\rm{H}}_3}{{\rm{O}}^+}}\right]}}\]

let us take a look at dissociation of HCO3-

HCO3-(aq) + H2O (I) ⇌ H3O+(aq) + CO32+ (aq)

\[{K_a}=\frac{{\left[{{H_3}{O^+}}\right]\cdot\left[{CO_3^{2-}}\right]}}{{\left[{HCO_3^-}\right]}}=4.7\cdot{10^{-11}}\]

\[\left[{CO_3^{2-}}\right]=\frac{{4.7\cdot{{10}^{-11}}\cdot\left[{HCO_3^-}\right]}}{{\left[{{H_3}{O^+}}\right]}}\]

05

The substitute reaction

Now we can substitute these results in equation

\begin{aligned}{{K_c}=\frac{{\left[{{\rm{HCO}}_3^-}\right]\cdot\left[{{\rm{C}}{{\rm{H}}_3}{\rm{CO}}_2^-}\right]}}{{\left[{{\rm{C}}{{\rm{O}}_3}^{2-}}\right]\cdot\left[{{\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H}}}\right]}}}\\{=\frac{{\left[{{\rm{HCO}}_3^-}\right]\cdot\frac{{\left.{1.8\cdot{{10}^{-5}}\cdot{\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H}}}\right]}}{{\left[{{{\rm{H}}_3}{{\rm{O}}^+}}\right]}}}}{{\frac{{4.7\cdot{{10}^{-11}}\cdot\left[{{\rm{HCO}}_3^-}\right]}}{{\left[ {{{\rm{H}}_3}{{\rm{O}}^+}}\right]}}\cdot\left[{{\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H}}}\right]}}}\\{=\frac{{1.8\cdot{{10}^{-5}}}}{{4.7\cdot{{10}^{-11}}}}}\\{=3.83\cdot{{10}^5}}\end{aligned}

SinceKc is too large, the concentration of the product is 3.38 .105 times larger than the concentration of reactant. In other words, reaction will go to completion

Hence 7.64. 10-3 moles of CO32- will react with 7.64. 10-3 moles of CH3CO2Hand produce7.64. 10-3 moles of HCO3 -

06

Reaction to the number of moles

We have to find the number of moles of CH3CO2Hthat will react at 7.64. 10-3 moles of HCO3 -

HCO3-(aq) + CH3CO2H(aq)⇌ H2CO3(aq) + CH3CO2-

\[{K_c}=\frac{{\left[ {{H_2}C{O_3}}\right]\cdot \left[ {C{H_3}CO_2^-}\right]}}{{\left[{HCO_3^-}\right]\cdot\left[{{\rm{C}}{{\rm{H}}_3}C{O_2}H}\right]}}\]

The dissociation of H2CO3

HCO3-(aq) + H2O (I)⇌H3O+(aq) + HCO32+ (aq)

\[{K_a}=\frac{{\left[{{H_3}{O^+}}\right]\cdot\left[{HCO_3^-}\right]}}{{\left[{{H_2}C{O_3}}\right]}}=4.3\cdot{10^{-7}}\]

\[\left[{HCO_3^-}\right]=\frac{{4.3\cdot{{10}^{-7}}\cdot\left[{{H_2}C{O_3}}\right]}}{{\left[ {{H_3}{O^+}}\right]}}\]

07

By substituting the  H2CO3

\[\begin{aligned}{{K_c}=\frac{{\left[{{{\rm{H}}_2}{\rm{C}}{{\rm{O}}_3}}\right]\cdot\left[{{\rm{C}}{{\rm{H}}_3}{\rm{CO}}_2^-}\right]}}{{\left[{{\rm{HCO}}_3^-}\right]\cdot\left[{{\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H}}}\right]}}}\\{=\frac{{\left[{{{\rm{H}}_2}{\rm{C}}{{\rm{O}}_3}}\right]\cdot\frac{{\left.{1.8\cdot{{10}^{-5}}\cdot{\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H}}} \right]}}{{\left[{{{\rm{H}}_3}{{\rm{O}}^+}}\right]}}}}{{\frac{{4.3\cdot{{10}^{-7}}\cdot\left[{{{\rm{H}}_2}{\rm{C}}{{\rm{O}}_3}}\right]}}{{\left[{{{\rm{H}}_3}{{\rm{O}}^+}}\right]}}\cdot\left[{{\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H}}}\right]}}}\\{=\frac{{1.8\cdot{{10}^{-5}}}}{{4.3\cdot{{10}^{-7}}}}}\\{=41.86}\end{aligned}

08

Finding the total amount of the moles

Since \[{K_c}\] is too large, the concentration of the product is \[41.86\] times larger than the concentration of the reactant. In other words, the reaction will go to completion

Hence the \[7.64 \cdot {10^{-3}}\]moles of \[{\rm{HC}}{{\rm{O}}_3}\] will react with\[7.64 \cdot {10^{-3}}\] moles of \[{\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H}}\]and produce\[7.64 \cdot {10^{-3}}\]\[{{\rm{H}}_2}{\rm{C}}{{\rm{O}}_3}\]

The total number of moles\[{\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H}}\]\[15.28 \cdot {10^{-3}}{\rm{\;moles\;}}\left( {7.64\cdot {{10}^{-3}}}\right.\]reacted with\[{\rm{C}}{{\rm{O}}_3}^{2-}{\rm{\;and\;}}7.64\cdot {10^{-3}}\]reacted with\[\left. {{\rm{HC}}{{\rm{O}}_3}^-} \right)\]

The volume required \[1.50{\rm{MC}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H}}\]

\begin{aligned}{\left[{{\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H}}}\right]=\frac{n}{V}}\\{V=\frac{n}{{\left[{C{H_3}C{O_2}H}\right]}}}\\{=\frac{{15.28\cdot{{10}^{-3}}{\rm{mol}}}}{{1.50{\rm{mol}}/{\rm{L}}}}}\\{=10.19\cdot{{10}^{-3}}{\rm{L}}}\\{=10.19{\rm{mL}}}\end{aligned}

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The following question is taken from a Chemistry Advanced Placement Examination and is used with the permission of the Educational Testing Service. Solve the following problem:

MgF2 (S) ⇌ Mg2+(aq) + 2F- (aq)

In a saturated solution of MgF2 at 18 °C, the concentration ofMg2+is 1.21×10-3 M.

The equilibrium is represented by the preceding equation.

(a) Write the expression for the solubility-product constant, Ksp, and calculate its value at 18 °C.

(b) Calculate the equilibrium concentration of Mg2+ in 1.000 L of saturated MgF2solution at 18 °C to which 0.100 mol of solid KF has been added. The KF dissolves completely. Assume the volume change is negligible.

(c) Predict whether a precipitate of MgF­2 will form whensolution of 100.0mL of a 3.00 ×10-3 -M Mg(NO3)2 is mixed with 200.0 mL of a 2.00 × 10–3 -M solution of NaF at 18 °C. Show the calculations to support your prediction.

(d) At 27 °C the concentration of Mg2+ in a saturated solution of MgF2 is 1.17×10-3 M. Is the dissolving of MgF2 in water an endothermic or an exothermic process? Give an explanation to support your conclusion.

Question: 30. Which of the following compounds precipitates from a solution that has the concentrations indicated? (See Appendix J for \({K_{sp}}\) values.)

(a) \(KCl{O_4}:\left( {{K^ + }} \right) = 0.01{M^ - }\left( {ClO_4^ - } \right) = 0.01M\)

(b) \({K_2}PtC{l_6}:\left( {{K^ + }} \right) = 0.01M,\left( {PtC{l_6}^{2 - }} \right) = 0.01M\) \(\)

(c) \(Pb{I_2}:\left( {P{b^{2 + }}} \right) = 0.003M,\left( {{I^ - }} \right) = 1.3 \times 1{0^{ - 3}}M\)

(d) \(A{g_2}\;S:\left( {A{g^ + }} \right) = 1 \times 1{0^{ - 10}}M,\left( {{S^{2 - }}} \right) = 1 \times 1{0^{ - 13}}M\)

Question: How many grams of \(Zn{(CN)_2}(s)(117.44g/mol)\)would be soluble in 100 mL of\({H_2}O\)? Include the balanced reaction and the expression for \({K_{sp}}\)in your answer. The \({K_{sp}}\)value for\(Zn{(CN)_2}(s)\;is\;3.0 \times 1{0^{ - 16}}\).

Even though Ca(OH)2 is an inexpensive base, its limited solubility restricts its use. What is theof a saturated solution of Ca(OH)2?

Question:Calculate the equilibrium concentration of Cu2+ in a solution initially with 0.050 M Cu2+ and 1.00 M NH3.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free