Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A current of \({\bf{2}}.{\bf{345}}{\rm{ }}{\bf{A}}\)passes through the cell shown in the Figure \({\bf{17}}.{\bf{20}}\) for \({\bf{45}}\) minutes. What is the volume of the hydrogen collected at room temperature if the pressure is exactly \({\bf{1}}\) atm? Assume the voltage is sufficient to perform the reduction. (Hint: Is hydrogen the only gas present above the water?)

Short Answer

Expert verified

The Volume of hydrogen is \(V = 0.81\)

Step by step solution

01

The Electrochemistry

Electrochemistry is the study of the generation of electricity from the energy released during spontaneous chemical reactions, as well as the application of electrical energy to non-spontaneous chemical transformations.

02

Determine the volume of hydrogen

From the given information, we can calculate the number of moles of electrons:

\(\begin{aligned}{{}{}}{I = 2.345{\rm{A}} = 2.345\frac{{\rm{C}}}{{\rm{s}}}}\\{{\rm{t}} = 45{\rm{min}} = 45{\rm{min}} \cdot \frac{{60{\rm{s}}}}{{1{\rm{min}}}} = 2700{\rm{s}}}\end{aligned}\)

\(\begin{aligned}{{}{}}{{\rm{Q}} = I \cdot {\rm{t}} = {\rm{n}} \cdot F}\\{I \cdot {\rm{t}} = n \cdot F}\\{n = \frac{{I \cdot {\rm{t}}}}{F}}\end{aligned}\)

\({\rm{n}} = \frac{{2.345\frac{{\rm{C}}}{{\rm{s}}} \cdot 2700{\rm{s}}}}{{96485\frac{{\rm{C}}}{{{\rm{mol}} \cdot {{\rm{e}}^ - }}}}} = 0.0656{\rm{mol}}{{\rm{e}}^ - }\)

If we write the cathode reaction of water electrolysis we can see how many mole \({e^ - }\)are needed to produce \(1\)mole of \({{\rm{H}}_2}\).

Cathode:

\(2{{\rm{H}}^ + } + 2{{\rm{e}}^ - } \to {{\rm{H}}_2}\)

Now using stoichiometry, we can calculate how much \({{\rm{H}}_2},{\rm{ }}0.0656\)mole \({{\rm{e}}^ - }\)can produce:

\(2{\rm{mol}}{e^ - }:1{\rm{molH}}2 = 0.0656{\rm{mol}}{e^ - }:xmol{{\rm{H}}_2}\)

\(\begin{aligned}{{}{}}{{\rm{xmol}}{{\rm{H}}_2} = \frac{{1{\rm{mol}}{{\rm{H}}_2} \cdot 0.0656{\rm{mol}}{{\rm{e}}^ - }}}{{2{\rm{mol}}{{\rm{e}}^ - }}}}\\{xmol{H_2} = 0.0328{\rm{mol}}}\end{aligned}\)

Using the ideal gas equation, we can calculate the volume of \({{\rm{H}}_2}\).

\(\begin{aligned}{{}{}}{P \cdot {\rm{V}} = {\rm{n}} \cdot {\rm{R}} \cdot {\rm{T}}}\\{{\rm{V}} = \frac{{{\rm{n}} \cdot R \cdot {\rm{T}}}}{{\rm{P}}}}\end{aligned}\)

\(\begin{aligned}{{}{}}{{\rm{R}} = 8.314\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}}\\{{\rm{J}} = {{\rm{m}}^3} \cdot {\rm{Pa}} = {\rm{d}}{{\rm{m}}^3} \cdot {\rm{Pa}} \cdot {{10}^3} = 1 \cdot {\rm{Pa}} \cdot {{10}^3}}\end{aligned}\)

\({\rm{V}} = \frac{{0.0328{\rm{mol}} \cdot 8.314 \cdot {{10}^3}\frac{{1 \cdot {\rm{Pa}}}}{{{\rm{K}} \cdot {\rm{mol}}}} \cdot 298.15{\rm{K}}}}{{101325{\rm{Pa}}}}\)

\(V = 0.81\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free