Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What mass of each product is produced in each of the electrolytic cells of the previous problem if a total charge of \({\bf{3}}.{\bf{33}} \times {\bf{1}}{{\bf{0}}^5}{\rm{ }}{\bf{C}}\) passes through each cell? Assume the voltage is sufficient to perform the reduction

Short Answer

Expert verified

The mass of each product is

(a) \(\begin{aligned}{{}{}}{m(Ca) = 69.13g}\\{m\left( {C{l_2}} \right) = 122.303g}\end{aligned}\)

(b) \(\begin{aligned}{{}{}}{m(Li) = 23.946g}\\{m\left( {{H_2}} \right) = 3.478g}\end{aligned}\)

(c) \(\begin{aligned}{{}{}}{m(Al) = 31.027g}\\{m\left( {C{l_2}} \right) = 122.303g}\end{aligned}\)

(d) \(\begin{aligned}{{}{}}{m(Cr) = 59.796g}\\{m\left( {B{r_2}} \right) = 275.669g}\end{aligned}\)

Step by step solution

01

Electrolytic cells

An electrolytic cell is a type of electrochemical cell that requires an external source of electrical energy (voltage placed between two electrodes) to drive a chemical reaction that would not occur otherwise.

02

Determine themass of each product

  • In order to calculate the mass of the products, we have to look at the steichiometry of the chemical reaction.
  • That is, we have to compare the number of electrons to the number of product atoms or molecules and use this to calculate the amount of the products.
  • When we have this, we can easily calculate the mass via the molar mass of the product.

(a) Cathode

\(C{a^{2 + }}(l) + 2{e^ - } \to Ca(s)\)

Here we see that

\(n\left( {{e^ - }} \right):n(Ca) = 2:1\)

So

\(n(Ca) = \frac{1}{2} \cdot n\left( {{e^ - }} \right)\)

We can calculate the \(n\left( {{e^ - }} \right)\) using the formula

\(Q = N\left( {{e^ - }} \right) \cdot e\)

Where\(e\) is the electric charge of a single electron.

This is a constant and it is\(1.6 \cdot {10^{ - 19}}C\).

\(N\left( {{e^ - }} \right) = \frac{Q}{e}\)

\(N\left( {{e^ - }} \right) = 2.08 \cdot {10^{24}}\)

\(n\left( {{e^ - }} \right) = \frac{{N\left( {{e^ - }} \right)}}{{{N_A}}}\)

(\({N_A}\)Is the Avogadro constant and it is \(6.022 \cdot {10^{23}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}\) )

\(n\left( {{e^ - }} \right) = 3.45\;{\rm{mol}}\)

\(n(Ca) = \frac{1}{2} \cdot 3.45\;{\rm{mol}}\)

\(n(Ca) = 1.725\;{\rm{mol}}\)

\(M(Ca) = Ar(Ca) \cdot \frac{g}{{mol}}\)

(\(Ar\) is relative atomic mass that can be found in the Periodic table)

\(M(Ca) = 40.078\frac{g}{{mol}}\)

\(m(Ca) = n(Ca) \cdot M(Ca)\)

\({\rm{ }}m(Ca) = 69.13g\)

A) anode:

\(2C{l^ - }(l) \to C{l_2}(g) + 2{e^ - }\)

Since we already calculated the amount of electrons in the previous task, we do not need to do so here. From the equation on the anode, we can calculate the ratio between amount of the electrons and the chlorine:

\(n\left( {{e^ - }} \right):n\left( {C{l_2}} \right) = 2:1\)

So,

\(n\left( {C{l_2}} \right) = \frac{1}{2} \cdot m\left( {{e^ - }} \right)\)

\(m\left( {C{l_2}} \right) = 1.725mol\)

To calculate the mass we have to first calculate molar mass of the chlorine:

\(M\left( {C{l_2}} \right) = 2 \cdot Ar(Cl)\frac{g}{{mol}}\)

\(M\left( {C{l_2}} \right) = 70.9\frac{g}{{mol}}\)

So, mass of the chlorine is:

\(m\left( {C{l_2}} \right) = n\left( {C{l_2}} \right) \cdot M\left( {C{l_2}} \right)\)

\(m\left( {C{l_2}} \right) = 122.303g\)

b) Cathode:

\(L{i^ + }(l) + {e^ - } \to Li(s)\)

\(n(Li):n\left( {{e^ - }} \right) = 1:1\)

We already calculated the amount of electrons in the task a.

\(n(Li) = n\left( {{e^ - }} \right) = 3.45\;{\rm{mol}}\)

\(m(Li) = n(Li) \cdot M(Li)\)

\(M(Li) = 6.941\frac{g}{{mol}}\)

\(m(Li) = 23.946g\)

Anode:

\(2{{\rm{H}}^ - }(l) \to {{\rm{H}}_2}(g) + 2{e^ - }\)

\(n\left( {{H_2}} \right):n\left( {{e^ - }} \right) = 1:2\)

\(n\left( {{H_2}} \right) = \frac{1}{2} \cdot n\left( {{e^ - }} \right)\)

\(n\left( {{H_2}} \right) = 1.725\;{\rm{mol}}\)

\(M\left( {{H_2}} \right) = 2.106\frac{g}{{mol}}{\rm{ }}\)

\(m\left( {{H_2}} \right) = 3.478g\)

c) Cathode:

\(A{l^{3 + }}(l) + 3{e^ - } \to Al(s)\)

\(n(Al):n\left( {{e^ - }} \right) = 1:3\)

\(n(Al) = \frac{1}{3} \cdot n\left( {{e^ - }} \right)\)

\(n(Al) = 1.15\;{\rm{mol}}\)

\(M(Al) = 26.98\frac{g}{{mol}}\)

\(m(Al) = 31.027g\)

Anode:

\(2C{l^ - }(l) \to C{l_2}(g) + 2{e^ - }\)

\(n\left( {C{l_2}} \right):n\left( {{e^ - }} \right) = 1:2\)

\(n\left( {C{l_2}} \right) = \frac{1}{2} \cdot n\left( {{e^ - }} \right)\)

\(n\left( {C{l_2}} \right) = 1.725\;{\rm{mol}}\)

\(M\left( {C{l_2}} \right) = 70.9\frac{g}{{mol}}\)

\(m\left( {C{l_2}} \right) = 122.303g\)

d) Cathode:

\(C{r^{3 + }}(l) + 3{e^ - } \to Cr(s)\)

\(n(Cr):n\left( {{e^ - }} \right) = 1:3\)

\(n(Cr) = \frac{1}{3} \cdot n\left( {{e^ - }} \right)\)

\(n(Cr) = 1.15\;{\rm{mol}}\)

\(M(Cr) = 51.996\frac{g}{{mol}}\)

\(m(Cr) = 59.796g\)

Anode:

\(n\left( {B{r_2}} \right):n\left( {{e^ - }} \right) = 1:2\)

\(n\left( {B{r_2}} \right) = \frac{1}{2} \cdot n\left( {{e^ - }} \right)\)

\(n\left( {B{r_2}} \right) = 1.725\;{\rm{mol}}\)

\(M\left( {B{r_2}} \right) = 159.808\frac{g}{{mol}}\)

\(m\left( {B{r_2}} \right) = 275.669g\)

The mass of each product is

(a) \(\begin{aligned}{{}{}}{m(Ca) = 69.13g}\\{m\left( {C{l_2}} \right) = 122.303g}\end{aligned}\)

(b) \(\begin{aligned}{{}{}}{m(Li) = 23.946g}\\{m\left( {{H_2}} \right) = 3.478g}\end{aligned}\)

(c) \(\begin{aligned}{{}{}}{m(Al) = 31.027g}\\{m\left( {C{l_2}} \right) = 122.303g}\end{aligned}\)

(d) \(\begin{aligned}{{}{}}{m(Cr) = 59.796g}\\{m\left( {B{r_2}} \right) = 275.669g}\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free