Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose you have three different metals, \({\rm{A}}\), \(B\), and \({\rm{C}}\). When metals \({\rm{A}}\) and \(B\) come into contact, \(B\) corrodes and \({\rm{A}}\)do not corrode. When metals \({\rm{A}}\)and \({\rm{C}}\) come into contact, \({\rm{A}}\) corrodes and \({\rm{C}}\) do not corrode. Based on this information, which metal corrodes and which metal does not corrode when \(B\) and \({\rm{C}}\) come into contact?

Short Answer

Expert verified

When \(B\) and \(C\) come into contact,\(B\) will corrode and \(C\) will not.

Step by step solution

01

Metal corrosion:

  • Metal corrodes when it interacts with another material, such as oxygen, hydrogen, an electrical current, or even dirt and germs.
  • Corrosion can also occur when metals such assteel are subjected to excessive tension, causing the substance to split.
02

Find the metal corrodes:

  • Since\(B\)corrodes when\(A\)and\(B\)comes into contact and\(A\)does not, it means that\(B\)is more likely to corrode because it has a lower reduction potential.
  • And because\(A\)corrodes when\(A\)and\(C\)comes into contact and\(C\)does not,\(A\)has a lower reduction potential than\(C\).
  • So\(C\)has the highest reduction potential,\(B\)the lowest and\(A\)is in between the two.
  • Once we know that, it is easy to conclude that when \(B\) and \(C\) come into contact, \(B\) will corrode and \(C\) will not.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Identify the species oxidized, species reduced, and the oxidizing agent and reducing agent for all the reactions in the previous problem.

(a) \({\rm{Al}}(s) + {\rm{Z}}{{\rm{r}}^{4 + }}(aq) \to {\rm{A}}{{\rm{l}}^{3 + }}(aq) + {\rm{Zr}}(s)\)

(b) \({\rm{A}}{{\rm{g}}^ + }(aq) + {\rm{NO}}(g) \to {\rm{Ag}}(s) + {\rm{N}}{{\rm{O}}_3}^ - (aq)\)(acidic solution)

(c) \({\rm{Si}}{{\rm{O}}_3}^{2 - }(aq) + {\rm{Mg}}(s) \to {\rm{Si}}(s) + {\rm{Mg}}{({\rm{OH}})_2}(s)\)(basic solution)

(d) \({\rm{Cl}}{{\rm{O}}_3}^ - (aq) + {\rm{Mn}}{{\rm{O}}_2}(s) \to {\rm{C}}{{\rm{l}}^ - }(aq) + {\rm{Mn}}{{\rm{O}}_4}^ - (aq)\)(basic solution)

Balance the following in basic solution:

(a) \({\bf{S}}{{\bf{O}}_{\bf{3}}}^{{\bf{2 - }}}{\bf{(aq) + Cu(OH}}{{\bf{)}}_{\bf{2}}}{\bf{(s)}} \to {\bf{S}}{{\bf{O}}_{\bf{4}}}^{{\bf{2 - }}}{\bf{(aq) + Cu(OH)(s)}}\)

(b) \({{\bf{O}}_{\bf{2}}}{\bf{(g) + Mn(OH}}{{\bf{)}}_{\bf{2}}}{\bf{(s)}} \to {\bf{Mn}}{{\bf{O}}_{\bf{2}}}{\bf{(s)}}\)

(c) \({\bf{N}}{{\bf{O}}_{\bf{3}}}^{\bf{ - }}{\bf{(aq) + }}{{\bf{H}}_{\bf{2}}}{\bf{(g)}} \to {\bf{NO(g)}}\)

(d) \({\bf{Al(s) + Cr}}{{\bf{O}}_{\bf{4}}}^{{\bf{2 - }}}{\bf{(aq)}} \to {\bf{Al(OH}}{{\bf{)}}_{\bf{3}}}{\bf{(s) + Cr(OH}}{{\bf{)}}_{\bf{4}}}^{\bf{ - }}{\bf{(aq)}}\)

Determine the standard cell potential and the cell potential under the stated conditions for the electrochemical reactions described here. State whether each is spontaneous or nonspontaneous under each set of conditions at \({\bf{298}}{\bf{.15\;K}}\).

(a) \({\bf{Hg(l) + }}{{\bf{S}}^{{\bf{2 - }}}}{\bf{(aq,0}}{\bf{.10M) + 2A}}{{\bf{g}}^{\bf{ + }}}{\bf{(aq,0}}{\bf{.25M)}} \to {\bf{2Ag(s) + HgS(s)}}\)

(b) The galvanic cell is made from a half-cell consisting of an aluminium electrode in 0.015M aluminium nitrate solution and a half-cell consisting of a nickel electrode in \({\bf{0}}{\bf{.25M}}\) nickel(II) nitrate solution.

(c) The cell is made of a half-cell in which \({\bf{1}}{\bf{.0M}}\) aqueous bromide is oxidized to \({\bf{0}}{\bf{.11M}}\) bromine ion and a half-cell in which aluminium ion at \({\bf{0}}{\bf{.023M}}\) is reduced to aluminium metal. Assume the standard reduction potential for \({\bf{B}}{{\bf{r}}_{\bf{2}}}{\bf{(l)}}\) is the same as that of \({\bf{B}}{{\bf{r}}_{\bf{2}}}{\bf{(aq)}}\).

What value of Q for the previous concentration cell would result in a voltage of 0.10 V? If the concentration of zinc ion at the cathode was 0.50 M, what was the concentration at the anode?

Why must the charge balance in oxidation-reduction reactions?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free