Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Explain what happens to battery voltage as a battery is used, in terms of the Nernst equation.

Short Answer

Expert verified

According to the Nernst equation That is, when we switch on the battery, a chemical process begins and continues indefinitely until it finds equilibrium - the battery dies.

Step by step solution

01

Nernst equation:

  • The Nernst equation specifies the link between cell potential and standard potential, as well as the electrically active (electroactive) species' activities.
  • It connects the effective concentrations (activities) of cell reaction components to the standard cell potential.
02

Determine the voltage of a battery when it is in use:

  • In order to explain this, we need to remind ourselves of the Nernst equation

\(E({\rm{ cell }}) = E({\rm{ cell }},{\rm{ standard }}) - \frac{{0.0592V}}{n} \cdot \log Q\)

  • When the battery runs out, it means that its voltage becomes\(\;0\).
  • From the Nernst equation, we can conclude that this happens when

\(E({\rm{ cell }},{\rm{ standard }}) = \frac{{0.0592V}}{n} \cdot \log Q\)

  • If we know that

\(E({\rm{ cell }},{\rm{ standard }}) = \frac{{0.0592V}}{n} \cdot \log K\)

  • We can see that the cell voltage will become zero when the chemical reaction occurring in the battery reaches equilibrium.
  • That means that when we turn the battery on, a chemical reaction starts happening and it goes on, like any chemical reaction, until it reaches equilibrium.
  • And when it reaches equilibrium, we see from the Nernst equation that the \(E(cell)\) becomes zero, which means that the battery dies when the chemical reaction occurring inside reaches equilibrium.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the data in Appendix \({\rm{L}}\) to determine the equilibrium constant for the following reactions. Assume 298.15\({\rm{K}}\) if no temperature is given.

(a) \({\bf{AgCl(s)}}\rightleftharpoons {\bf{A}}{{\bf{g}}^{\bf{ + }}}{\bf{(aq) + C}}{{\bf{l}}^{\bf{ - }}}{\bf{(aq)}}\)

(b) \({\bf{CdS(s)}}\rightleftharpoons {\bf{C}}{{\bf{d}}^{{\bf{2 + }}}}{\bf{(aq) + }}{{\bf{S}}^{{\bf{2 - }}}}{\bf{(aq)}}\) at \({\bf{377\;K}}\)

(c) \({\bf{H}}{{\bf{g}}^{{\bf{2 + }}}}{\bf{(aq) + 4B}}{{\bf{r}}^{\bf{ - }}}{\bf{(aq)}}\rightleftharpoons {\left[ {{\bf{HgB}}{{\bf{r}}_{\bf{4}}}} \right]^{{\bf{2 - }}}}{\bf{(aq)}}\)

(d) \({{\bf{H}}_{\bf{2}}}{\bf{O(l)}}\rightleftharpoons {{\bf{H}}^{\bf{ + }}}{\bf{(aq) + O}}{{\bf{H}}^{\bf{ - }}}{\bf{(aq)}}\) at \({\bf{2}}{{\bf{5}}^{\bf{^\circ }}}{\bf{C}}\)

List some things that are typically considered when selecting a battery for a new application.

For the \(\Delta {G\circ }\) values given here, determine the standard cell potential for the cell.

(a) \(12\;{\rm{kJ}}/{\rm{mol}},{\rm{n}} = 3\)

(b) \( - 45\;{\rm{kJ}}/{\rm{mol}},{\rm{n}} = 1\)

Identify the species that was oxidized, the species that was reduced, the oxidizing agent, and the reducing agentin each of the reactions of the previous problem.

(a) \({\bf{S}}{{\bf{O}}_{\bf{3}}}^{{\bf{2 - }}}{\bf{(aq) + Cu(OH}}{{\bf{)}}_{\bf{2}}}{\bf{(s)}} \to {\bf{S}}{{\bf{O}}_{\bf{4}}}^{{\bf{2 - }}}{\bf{(aq) + Cu(OH)(s)}}\)

(b) \({{\bf{O}}_{\bf{2}}}{\bf{(g) + Mn(OH}}{{\bf{)}}_{\bf{2}}}{\bf{(s)}} \to {\bf{Mn}}{{\bf{O}}_{\bf{2}}}{\bf{(s)}}\)

(c) \({\bf{N}}{{\bf{O}}_{\bf{3}}}^{\bf{ - }}{\bf{(aq) + }}{{\bf{H}}_{\bf{2}}}{\bf{(g)}} \to {\bf{NO(g)}}\)

(d) \({\bf{Al(s) + Cr}}{{\bf{O}}_{\bf{4}}}^{{\bf{2 - }}}{\bf{(aq)}} \to {\bf{Al(OH}}{{\bf{)}}_{\bf{3}}}{\bf{(s) + Cr(OH}}{{\bf{)}}_{\bf{4}}}^{\bf{ - }}{\bf{(aq)}}\)

A current of \({\bf{2}}.{\bf{345}}{\rm{ }}{\bf{A}}\)passes through the cell shown in the Figure \({\bf{17}}.{\bf{20}}\) for \({\bf{45}}\) minutes. What is the volume of the hydrogen collected at room temperature if the pressure is exactly \({\bf{1}}\) atm? Assume the voltage is sufficient to perform the reduction. (Hint: Is hydrogen the only gas present above the water?)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free