Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the data in Appendix \({\rm{L}}\) to determine the equilibrium constant for the following reactions. Assume 298.15\({\rm{K}}\) if no temperature is given.

(a) \({\bf{AgCl(s)}}\rightleftharpoons {\bf{A}}{{\bf{g}}^{\bf{ + }}}{\bf{(aq) + C}}{{\bf{l}}^{\bf{ - }}}{\bf{(aq)}}\)

(b) \({\bf{CdS(s)}}\rightleftharpoons {\bf{C}}{{\bf{d}}^{{\bf{2 + }}}}{\bf{(aq) + }}{{\bf{S}}^{{\bf{2 - }}}}{\bf{(aq)}}\) at \({\bf{377\;K}}\)

(c) \({\bf{H}}{{\bf{g}}^{{\bf{2 + }}}}{\bf{(aq) + 4B}}{{\bf{r}}^{\bf{ - }}}{\bf{(aq)}}\rightleftharpoons {\left[ {{\bf{HgB}}{{\bf{r}}_{\bf{4}}}} \right]^{{\bf{2 - }}}}{\bf{(aq)}}\)

(d) \({{\bf{H}}_{\bf{2}}}{\bf{O(l)}}\rightleftharpoons {{\bf{H}}^{\bf{ + }}}{\bf{(aq) + O}}{{\bf{H}}^{\bf{ - }}}{\bf{(aq)}}\) at \({\bf{2}}{{\bf{5}}^{\bf{^\circ }}}{\bf{C}}\)

Short Answer

Expert verified
  1. \({\rm{AgCl}}({\rm{s}})\rightleftharpoons {\rm{A}}{{\rm{g}}^ + } + {\rm{C}}{{\rm{l}}^ - }\)Equilibrium constant is \(1.66 \times {10^{ - 10}}\).
  2. \({\rm{CdS}}({\rm{s}}) \to {\rm{C}}{{\rm{d}}^{2 + }}({\rm{aq}}) + {{\rm{S}}^{2 - }}({\rm{aq}})({\rm{ At377K) }}\)Equilibrium constant is \(2.75 \times {10^{ - 21}}\).
  3. \({\rm{H}}{{\rm{g}}^{2 + }}({\rm{aq}}) + 4{\rm{B}}{{\rm{r}}^ - }({\rm{aq}}) \to {\left( {{\rm{Hg}}{{({\rm{Br}})}_4}} \right)^{2 - }}({\rm{aq}})\). Equilibrium constant is \(5.355 \times {10^{21}}\).
  4. \({{\rm{H}}_2}{\rm{O}}({\rm{l}}) \to {{\rm{H}}^ + }({\rm{aq}}) + {\rm{O}}{{\rm{H}}^ - }({\rm{aq}})\). Equilibrium constant is \(9.35 \times {10^{ - 15}}\).

Step by step solution

01

Define the equilibrium constant

Equilibrium constant is the ratio of products to that of reactants. It gives idea about the progress of a reversible reaction.

02

Step 2:a) Determinethe equilibrium constant

\({\rm{AgCl}}({\rm{s}})\rightleftharpoons {\rm{A}}{{\rm{g}}^ + } + {\rm{C}}{{\rm{l}}^ - }\)

Equilibrium constant is \(1.66 \times {10^{ - 10}}\).

Using Nernst equation we can write that equilibrium constant \({\rm{K = 1}}{{\rm{0}}^{{\rm{n}}{{\rm{E}}^{\rm{0}}}}}_{{\rm{cell}}}{\rm{/0}}{\rm{.059}}\)

\(\begin{aligned}{}{\rm{AgCl}}({\rm{s}}) + {{\rm{e}}^ - } \to {\rm{A}}{{\rm{g}}^ + } + {\rm{C}}{{\rm{l}}^ - }\left( {{{\rm{E}}^0} = 0.22233\;{\rm{V}}} \right)\\{\rm{Ag}} \to {\rm{A}}{{\rm{g}}^ + } + {{\rm{e}}^ - }\left( {{{\rm{E}}^0} = - 0.7996\;{\rm{V}}} \right)\end{aligned}\)

Adding these two equations we get \({\rm{AgCl}}({\rm{s}}) \to {\rm{A}}{{\rm{g}}^ + }({\rm{aq}}) + {\rm{C}}{{\rm{l}}^ - }({\rm{aq}})\) which has cell potential \( = (0.22233 - 0.7996){\rm{V}} = - 0.57727\;{\rm{V}}\)

Thus, equilibrium constant can be calculated as follows:

\(\begin{aligned}{}K &= 1{0^{n{E^0}_{cell}/0.059}}\\ &= 1{0^{ - 1 \times 0.57727/0.059}}\\& = 1{0^{ - 9.779}}\\ &= 1.66 \times 1{0^{ - 10}}\end{aligned}\)

03

b) Determine the equilibrium constant

\({\rm{CdS}}({\rm{s}}) \to {\rm{C}}{{\rm{d}}^{2 + }}({\rm{aq}}) + {{\rm{S}}^{2 - }}({\rm{aq}})({\rm{ At377K) }}\)

Equilibrium constant is \(2.75 \times {10^{ - 21}}\).

Using Nernst equation we can write that equilibrium constant

\({\mathop{\rm K}\nolimits} = 1{0^{n{E^0}}}_{cell }\left\{ {\{ (2.303 \times 8.314 \times 377)/96500\} = 1{0^{n{E^0}}}} \right.\) cell \(/.0746\)

\(\begin{aligned}{}CdS + 2{e^ - } \to Cd + {S^{2 - }}\left( {{E^0} = - 1.1700V} \right)\\Cd \to C{d^{2 + }} + 2{e^ - }\left( {{E^0} = 0.4030V} \right)\end{aligned}\)

Adding these two equations we get \({\mathop{\rm CdS}\nolimits} \to C{d^{2 + }} + 2{e^ - }\) which has cell potential

\( = ( - 1.1700 + 0.4030)V = - 0.7670\;V\)

Thus equilibrium constant can be calculated as follows:

\(\begin{aligned}{}K& = 1{0^{n{E^0} cell /.0746}}\\ &= 1{0^{ - 1 \times 0.57727/0.059}}\\ &= 1{0^{ - 9.779}} &= 1.66 \times 1{0^{ - 10}}\\ &= 1{0^{2 \times - 0.7670/0.0746}}\\ &= 1{0^{ - 20.56}}\\ &= 2.75 \times 1{0^{ - 21}}\end{aligned}\)

04

c) Determine the equilibrium constant

\({\rm{H}}{{\rm{g}}^{2 + }}({\rm{aq}}) + 4{\rm{B}}{{\rm{r}}^ - }({\rm{aq}}) \to {\left( {{\rm{Hg}}{{({\rm{Br}})}_4}} \right)^{2 - }}({\rm{aq}})\)

Equilibrium constant is \(5.355 \times {10^{21}}\).

Using Nernst equation we can write that equilibrium constant \({\mathop{\rm K}\nolimits} = 1{0^{n{E^0}}}_{ccl}/0.059\)

\({\mathop{\rm Hg}\nolimits} + 4B{r^ - }(aq) \to \left( {_g^H(aq) + 2{e^ - }\left( {{E^0} = - 0.21\;V} \right)} \right.\)

\({{\mathop{\rm Hg}\nolimits} ^{2 + }}(aq) + 2{e^ - } \to Hg\left( {{E^0} = 0.851\;V} \right)\)

Adding these two equations we get \({{\mathop{\rm Hg}\nolimits} ^{2 + }}(aq) + 4B{r^ - }(aq) \to {\left( {Hg{{(Br)}_4}} \right)^{2 - }}(aq)\) which has cell potential

\((0.851 - 0.210)V = 0.641\;V\)

Thus equilibrium constant can be calculated as follows:

\({\mathop{\rm K}\nolimits} = 1{0^{n{E_{cell }} / 0.059}} = 1{0^{2 \times 0.641/0.059}} = 1{0^{21.728}} = 5.355 \times 1{0^{21}}\)

05

d) Determine the equilibrium constant

\({{\rm{H}}_2}{\rm{O}}({\rm{l}}) \to {{\rm{H}}^ + }({\rm{aq}}) + {\rm{O}}{{\rm{H}}^ - }({\rm{aq}})\)

Equilibrium constant is \(9.35 \times {10^{ - 15}}\).

Explanation of Solution

Using Nernst equation we can write that equilibrium constant \({\mathop{\rm K}\nolimits} = 1{0^{n{E^0}}}_{cell }/0.059\)

\(\begin{aligned}{}2{{\rm{H}}_2}{\rm{O}} + 2{{\rm{e}}^ - } \to {{\rm{H}}_2} + 2{\rm{O}}{{\rm{H}}^ - }\left( {{{\rm{E}}_0} = - 0.8277\;{\rm{V}}} \right)\\2{{\rm{H}}_2}{\rm{O}} + {{\rm{H}}_2} \to 2{{\rm{H}}_3}{{\rm{O}}^ + }({\rm{aq}}) + 2{\rm{O}}{{\rm{H}}^ - }({\rm{aq}})\left( {{{\rm{E}}_0} = 0.00\;{\rm{V}}} \right)\end{aligned}\)

Add these two equations.

The equation is given by:

\(2{{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_3}{{\rm{O}}^ + }({\rm{aq}}) + {\rm{O}}{{\rm{H}}^ - }({\rm{aq}})\)

Cell potential is equal to

\( - (0.8277 - 0)V = - 0.8277\;V\)

Thus equilibrium constant can be calculated as follows:

\({\mathop{\rm K}\nolimits} = 1{0^{nE_{cell }^0/0.059}} = 1{0^{1 \times - 0.8277/0.059}} = 1{0^{14.028}} = 9.35 \times 1{0^{ - 15}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A galvanic cell consists of a Mg electrode in \({\bf{1M}}\)\({\bf{Mg}}{\left( {{\bf{N}}{{\bf{O}}_{\bf{3}}}} \right)_{\bf{2}}}\)solution and a Ag electrode in 1M AgNO solution. Calculate the standard cell potential at \({25^\circ }{\rm{C}}\).

Determine the overall reaction and its standard cell potential at 25 ยฐC for the reaction involving the galvanic cell made from a half-cell consisting of a silver electrode in 1 M silver nitrate solution and a half-cell consisting of azinc electrode in 1 M zinc nitrate. Is the reaction spontaneous at standard conditions?

Determine \({\bf{\Delta G}}\) and \({\bf{\Delta G}}^\circ \) for each of the reactions in the previous problem.

An inventor proposes using a SHE (standard hydrogen electrode) in a new battery for smartphones that also removes toxic carbon monoxide from the air:

Anode:\({\bf{CO(g) + }}{{\bf{H}}_{\bf{2}}}{\bf{O(l)}} \to {\bf{C}}{{\bf{O}}_{\bf{2}}}{\bf{(g) + 2}}{{\bf{H}}^{\bf{ + }}}{\bf{(aq) + 2}}{{\bf{e}}^{\bf{ - }}}\;\;\;{\bf{E}}_{{\bf{anode }}}^{\bf{^\circ }}{\bf{ = - 0}}{\bf{.53\;V}}\)

Cathode:\({\bf{2}}{{\bf{H}}^{\bf{ + }}}{\bf{(aq) + 2}}{{\bf{e}}^{\bf{ - }}} \to {{\bf{H}}_{\bf{2}}}{\bf{(g)}}\;\;\;{\bf{E}}_{{\bf{cathode }}}^{\bf{^\circ }}{\bf{ = 0\;V}}\)

___________________________________________________________

Overall:\({\bf{CO(g) + }}{{\bf{H}}_{\bf{2}}}{\bf{O(l)}} \to {\bf{C}}{{\bf{O}}_{\bf{2}}}{\bf{(g) + }}{{\bf{H}}_{\bf{2}}}{\bf{(g)}}\;\;\;{\bf{E}}_{{\bf{cell }}}^{\bf{^\circ }}{\bf{ = + 0}}{\bf{.53\;V}}\)

Would this make a good battery for smartphones? Why or why not?

Determine the overall reaction and its standard cell potential at \({25circ} {\rm{C}}\) for this reaction. Is the reaction spontaneous at standard conditions?

\({\rm{Cu}}(s)\left| {{\rm{C}}{{\rm{u}}^{2 + }}(aq) || {\rm{A}}{{\rm{u}}^{3 + }}(aq)} \right|{\rm{Au}}(s)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free