Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For each reaction listed, determine its standard cell potential at \({25\circ }{\rm{C}}\) and whether the reaction is spontaneous at standard conditions.

(a)\({\mathop{\rm Mn}\nolimits} (s) + {\rm{N}}{{\rm{i}}^{2 + }}(aq) \to {{\mathop{\rm Mn}\nolimits} ^{2 + }}(aq) + {\rm{Ni}}(s)\)

(b)\(3{\rm{C}}{{\rm{u}}^{2 + }}(aq) + 2{\rm{Al}}(s) \to 2{\rm{A}}{{\rm{l}}^{3 + }}(aq) + 3{\rm{Cu}}(s)\)

(c)\({\rm{Na}}(s) + {\rm{LiN}}{{\rm{O}}_3}(aq) \to {\rm{NaN}}{{\rm{O}}_3}(aq) + {\rm{Li}}(s)\)

(d) \({\rm{Ca}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}(aq) + {\rm{Ba}}(s) \to {\rm{Ba}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}(aq) + {\rm{Ca}}(s)\)

Short Answer

Expert verified
  1. The standard cell potential at \({25\circ }{\rm{C}}\) is \( + 1.187\;{\rm{V}}\). The standard cell potential is positive, and then the reaction is spontaneous.
  2. The standard cell potential at \({25\circ }{\rm{C}}\) is \( + 0.4596\;{\rm{V}}\).The standard cell potential is positive, and then the reaction is spontaneous.
  3. The standard cell potential at \({25\circ }{\rm{C}}\) is \( - 0.33\;{\rm{V}}\). The standard cell potential is negative, and then the reaction is non-spontaneous.
  4. The standard cell potential at \({25\circ }{\rm{C}}\) is \( + 0.044\;{\rm{V}}\).The standard cell potential is positive, and then the reaction is spontaneous.

Step by step solution

01

Define standard cell potential

For positive value of standard cell potential, the reaction isspontaneousand it isnon-spontaneousfor negative value of the standard cell potential.

02

a) Determine the standard cell potential

The standard cell potential at \({25\circ }{\rm{C}}\) is \( + 1.187\;{\rm{V}}\)

The standard cell potential is positive, and then the reaction is spontaneous.

Given:

\(Mn(s) + N{i^{2 + }}(aq) \to M{n^{2 + }}(aq) + Ni(s)\)

In the given reaction Mn is oxidized at anode and Ni is reduced at cathode

Anode reaction:

\(Mn(s) \to M{n^{2 + }}(aq) + 2{e^ - }\quad {E^o} = - 1.185\;{\rm{V}}\)

Cathode reaction:

\(N{i^{2 + }}(aq) + 2{e^ - } \to Ni(s)\quad {E^o} = - 0.257V\)

Now calculate the standard cell potential at \({25\circ }{\rm{C}}\), using the following expression:

\(\begin{aligned}E_{{\rm{cell }}}^o &= E_{{\rm{cathode }}}^o - E_{{\rm{anode }}}^o\\E_{{\rm{cell }}}^o &= - 1.185\;{\rm{V}} - ( - 2.372\;{\rm{V}})\\ &= + 1.187\;{\rm{V}}\end{aligned}\)

03

b) Determine the standard cell potential

Given:

\(Cu(s) + 2A{g^ + }(aq) \to C{u^{2 + }}(aq) + 2Ag(s)\)

In the given reaction copper is oxidized at anode and silver is reduced at cathode

Anode reaction:

\(Cu(s) \to {\rm{C}}{{\rm{u}}^{2 + }}(aq) + 2{e^ - }\quad {E^o} = + 0.34\;{\rm{V}}\)

Cathode reaction:

\(2{\rm{A}}{{\rm{g}}^ + }(aq) + 2{e^ - } \to 2{\rm{Ag}}(s)\quad {E^o} = + 0.7996\;{\rm{V}}\)

Now calculate the standard cell potential at \({25\circ }{\rm{C}}\), using the following expression:

\(\begin{aligned}E_{{\rm{cell }}}^o &= E_{{\rm{cathode }}}^o - E_{{\rm{anode }}}^o\\E_{{\rm{cell }}}^o &= + 0.7996\;{\rm{V}} - (0.34\;{\rm{V}})\\ &= + 0.4596\;{\rm{V}}\end{aligned}\)

Here the standard cell potential is positive, and then the reaction is spontaneous.

04

c) Determine the standard cell potential

Given:

\({\rm{Na}}(s) + {\rm{LiN}}{{\rm{O}}_3}(aq) \to {\rm{NaN}}{{\rm{O}}_3}(aq) + {\rm{Li}}({\rm{s}})\)

In the given reaction sodium is oxidized at anode and lithium is reduced at cathode

Anode reaction:

\(Na(s) \to N{a^ + }(aq) + {e^ - }\quad {E^o} = - 2.71\;{\rm{V}}\)

Cathode reaction:

\({\rm{L}}{{\rm{i}}^ + }(aq) + {e^ - } \to {\rm{Li}}(s)\quad {E^o} = - 3.04\;{\rm{V}}\)

Now, calculate the standard cell potential at \({25\circ }{\rm{C}}\), using the following expression:

\(\begin{aligned}E_{{\rm{cell }}}^o &= E_{{\rm{cathode }}}^o - E_{{\rm{anode }}}^o\\E_{{\rm{cell }}}^o &= - 3.04\;{\rm{V}} - ( - 2.71\;{\rm{V}})\\ &= - 0.33\;{\rm{V}}\end{aligned}\)

Here the standard cell potential is negative, and then the reaction is non-spontaneous.

05

d) Determine the standard cell potential

Given:

\({\rm{Ca}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}(aq) + {\rm{Ba}}({\rm{s}}) \to {\rm{Ba}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}(aq) + {\rm{Ca}}({\rm{s}})\)

In the given reaction barium is oxidized at anode and calcium is reduced at cathode

Anode reaction:

\(Ba(S) \to B{a^{2 + }}(aq) + 2{e^ - }\quad {E^o} = - 2.912V\)

Cathode reaction:

Now calculate the standard cell potential at \({25\circ }{\rm{C}}\), using the following expression:

\(\begin{aligned}E_{{\rm{cell }}}^o &= E_{{\rm{cathode }}}^o - E_{{\rm{anode }}}^o\\E_{{\rm{cell }}}^o &= - 2.868 - ( - 2.912V)\\ & = + 0.044V\end{aligned}\)

Here the standard cell potential is positive, and then the reaction is spontaneous.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What mass of zinc is required to galvanize the top of a 3.00 m ร— 5.50 m sheet of iron to a thickness of0.100 mm of zinc? If the zinc comes from a solution of \(Zn{\left( {N{O_3}} \right)_2}\) and the current is 25.5 A, how long will it take to galvanize the top of the iron? The density of zinc is 7.140 g/cm3

An active (metal) electrode was found to lose mass as the oxidation-reduction reaction was allowed to proceed. Was the electrode part of the anode or cathode? Explain.

A galvanic cell consists of a Mg electrode in \({\bf{1M}}\)\({\bf{Mg}}{\left( {{\bf{N}}{{\bf{O}}_{\bf{3}}}} \right)_{\bf{2}}}\)solution and a Ag electrode in 1M AgNO solution. Calculate the standard cell potential at \({25^\circ }{\rm{C}}\).

For each reaction listed, determine its standard cell potential at 25oC and whether the reaction is spontaneous at standard conditions.

(a) \({\rm{Mg}}(s) + {\rm{N}}{{\rm{i}}^{2 + }}(aq) \to {\rm{M}}{{\rm{g}}^{2 + }}(aq) + {\rm{Ni}}(s)\)

(b) \(2{\rm{A}}{{\rm{g}}^ + }(aq) + {\rm{Cu}}(s) \to {\rm{C}}{{\rm{u}}^{2 + }}(aq) + 2{\rm{Ag}}(s)\)

(c) \({\rm{Mn}}(s) + {\rm{Sn}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}(aq) \to {\mathop{\rm Mn}\nolimits} {\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}(aq) + {\mathop{\rm Sn}\nolimits} (s)\)

(d) \(3{\rm{Fe}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}(aq) + {\rm{Au}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_3}(aq) \to 3{\rm{Fe}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_3}(aq) + {\rm{Au}}(s)\)

Write the following balanced reactions using cell notation. Use platinum as an inert electrode, if needed.

(a) \({\rm{Mg}}(s) + {\rm{N}}{{\rm{i}}^{2 + }}(aq) \to {\rm{M}}{{\rm{g}}^{2 + }}(aq) + {\rm{Ni}}(s)\)

(b) \(2{\rm{A}}{{\rm{g}}^ + }(aq) + {\rm{Cu}}(s) \to {\rm{C}}{{\rm{u}}^{2 + }}(aq) + 2{\rm{Ag}}(s)\)

(c) \({\rm{Mn}}(s) + {\rm{Sn}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}(aq) \to {\rm{Mn}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}(aq) + {\rm{Au}}(s)\)

(d)\(3{\rm{CuN}}{{\rm{O}}_3}(aq) + {\rm{Au}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_3}(aq) \to 3{\rm{Cu}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}(aq) + {\rm{Au}}(s)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free