Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For the scenario in the previous question, how many electrons moved through the circuit.

Short Answer

Expert verified

Number of electrons is \({\rm{3}}{\rm{.28 \times 1}}{{\rm{0}}^{{\rm{22}}}}\)

Step by step solution

01

Formula of number of electron

The charge of 1 electron is equal to\({\bf{1}}{\bf{.6022 \times 1}}{{\bf{0}}^{{\bf{ - 19}}}}{\bf{C}}\). Thus, in 1C, the number of electrons will be:

\(\begin{array}{l}{\bf{1C = }}\frac{{\bf{1}}}{{{\bf{1}}{\bf{.6022 \times 1}}{{\bf{0}}^{{\bf{ - 19}}}}}}{\bf{ }}\\{\bf{electrons = 6}}{\bf{.2414 \times 1}}{{\bf{0}}^{{\bf{18}}}}{\bf{ electrons}}\end{array}\)

02

Determine the number of electrons

For 5250 C of charge, the number of electrons can be calculated as follows:

\({\rm{1C}} \to {\rm{6}}{\rm{.2414 \times 1}}{{\rm{0}}^{{\rm{18}}}}{\rm{ electrons }}\)

Thus, \(5250{\rm{C}} \to (5250)\left( {6.2414 \times {{10}^{18}}{\rm{ electrons }}} \right) = 3.28 \times {10^{22}}{\rm{ electrons }}\)

Therefore, the number of electrons are \(3.28 \times 1{0^{22}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine the standard cell potential and the cell potential under the stated conditions for the electrochemical reactions described here. State whether each is spontaneous or nonspontaneous under each set of conditions at \({\bf{298}}{\bf{.15\;K}}\).

(a) \({\bf{Hg(l) + }}{{\bf{S}}^{{\bf{2 - }}}}{\bf{(aq,0}}{\bf{.10M) + 2A}}{{\bf{g}}^{\bf{ + }}}{\bf{(aq,0}}{\bf{.25M)}} \to {\bf{2Ag(s) + HgS(s)}}\)

(b) The galvanic cell is made from a half-cell consisting of an aluminium electrode in 0.015M aluminium nitrate solution and a half-cell consisting of a nickel electrode in \({\bf{0}}{\bf{.25M}}\) nickel(II) nitrate solution.

(c) The cell is made of a half-cell in which \({\bf{1}}{\bf{.0M}}\) aqueous bromide is oxidized to \({\bf{0}}{\bf{.11M}}\) bromine ion and a half-cell in which aluminium ion at \({\bf{0}}{\bf{.023M}}\) is reduced to aluminium metal. Assume the standard reduction potential for \({\bf{B}}{{\bf{r}}_{\bf{2}}}{\bf{(l)}}\) is the same as that of \({\bf{B}}{{\bf{r}}_{\bf{2}}}{\bf{(aq)}}\).

Why do batteries go dead, but fuel cells do not?

Suppose you have three different metals, \({\rm{A}}\), \(B\), and \({\rm{C}}\). When metals \({\rm{A}}\) and \(B\) come into contact, \(B\) corrodes and \({\rm{A}}\)do not corrode. When metals \({\rm{A}}\)and \({\rm{C}}\) come into contact, \({\rm{A}}\) corrodes and \({\rm{C}}\) do not corrode. Based on this information, which metal corrodes and which metal does not corrode when \(B\) and \({\rm{C}}\) come into contact?

An active (metal) electrode was found to lose mass as the oxidation-reduction reaction was allowed to proceed. Was the electrode part of the anode or cathode? Explain.

Use the data in Appendix \({\rm{L}}\) to determine the equilibrium constant for the following reactions. Assume 298.15\({\rm{K}}\) if no temperature is given.

(a) \({\bf{AgCl(s)}}\rightleftharpoons {\bf{A}}{{\bf{g}}^{\bf{ + }}}{\bf{(aq) + C}}{{\bf{l}}^{\bf{ - }}}{\bf{(aq)}}\)

(b) \({\bf{CdS(s)}}\rightleftharpoons {\bf{C}}{{\bf{d}}^{{\bf{2 + }}}}{\bf{(aq) + }}{{\bf{S}}^{{\bf{2 - }}}}{\bf{(aq)}}\) at \({\bf{377\;K}}\)

(c) \({\bf{H}}{{\bf{g}}^{{\bf{2 + }}}}{\bf{(aq) + 4B}}{{\bf{r}}^{\bf{ - }}}{\bf{(aq)}}\rightleftharpoons {\left[ {{\bf{HgB}}{{\bf{r}}_{\bf{4}}}} \right]^{{\bf{2 - }}}}{\bf{(aq)}}\)

(d) \({{\bf{H}}_{\bf{2}}}{\bf{O(l)}}\rightleftharpoons {{\bf{H}}^{\bf{ + }}}{\bf{(aq) + O}}{{\bf{H}}^{\bf{ - }}}{\bf{(aq)}}\) at \({\bf{2}}{{\bf{5}}^{\bf{^\circ }}}{\bf{C}}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free