Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Which base in Table 14.3 is most appropriate for preparation of a buffer solution with a pH of 10.65? Explain your choice.

Short Answer

Expert verified

\(C{H_3}N{H_2} \) would be the best choice for our buffer solution.

Step by step solution

01

Which acid is appropriate for preparation of buffer solution

A buffer solution of any pH value can, in theory, be made using any acid- base pair and modifying the ratio of acid to base concentration, according to the Henderson-Hasselbach equation. However, not all of these buffers would have the same capacity. A capacity of a buffer is definedas the amount of acid or base that can be added to the buffer solution before a significant change in pH occurs. This capacity depends on the concentrations of the acid and the base component of the buffer. Therefore, we must choose the components of our buffer to fit the desired pH of the solution. A general rule is, choose the closer the pKa of the acid component to the desired pH, the better a choice the buffer is. Once we know this, we can conclude that we need to determine the pKa values for the acidic component of each of the buffers in the table and see which value is the closest to 10.65. However, we only have Kbvalues in the table. We have to first calculate the Ka values from the Kb values. We do this using the equation:

\({K_a} = \frac{{{K_w}}}{{{K_b}}}\)

Where Kw is the ionic water product, a constant that equals 10-14.

\({K_a}\left( {{{\left( {C{H_3}} \right)}_2}NH_2^ + } \right) = \frac{{{K_w}}}{{{K_b}\left( {{{\left( {C{H_3}} \right)}_2}NH} \right)}}\)

\(\begin{align}{K_a}\left( {{{\left( {C{H_3}} \right)}_2}NH_2^ + } \right) &= \frac{{1{0^ - }14}}{{5.9 \times 1{0^{ - 4}}}}\\{K_a}\left( {{{\left( {C{H_3}} \right)}_2}NH_2^ + } \right) &= 1.7 \times 1{0^{ - 11}}\\{K_a}\left( {C{H_3}NH_3^ + } \right) &= \frac{{{K_w}}}{{{K_b}\left( {C{H_3}N{H_2}} \right)}}\end{align}\)

\(\begin{align}{K_a}\left( {C{H_3}NH_3^ + } \right) &= \frac{{1{0^{ - 14}}}}{{4.4 \times 1{0^{ - 4}}}}\\{K_a}\left( {C{H_3}NH_3^ + } \right) &= 2.3 \times 1{0^{ - 11}}\end{align}\)

\(\begin{align}{K_a}\left( {{{\left( {C{H_3}} \right)}_3}N{H^ + }} \right) &= \frac{{{K_w}}}{{{K_b}\left( {{{\left( {C{H_3}} \right)}_3}\;N} \right)}}\\{K_a}\left( {{{\left( {C{H_3}} \right)}_3}N{H^ + }} \right) &= \frac{{1{0^{ - 14}}}}{{6.3 \times 1{0^{ - 5}}}}\\{K_a}\left( {{{\left( {C{H_3}} \right)}_3}N{H^ + }} \right) &= 1.6 \times 1{0^{ - 10}}\\{K_a}\left( {NH_4^ + } \right) &= \frac{{{K_w}}}{{{K_b}\left( {N{H_3}} \right)}}\\{K_a}\left( {NH_4^ + } \right) = \frac{{1{0^{ - 14}}}}{{1.8 \times 1{0^{ - 5}}}}\\{K_a}\left( {NH_4^ + } \right) &= 5.6 \times 1{0^{ - 10}}\\{K_a}\left( {{C_6}{H_5}NH_3^ + } \right) &= \frac{{{K_w}}}{{{K_b}\left( {{C_6}{H_5}N{H_2}} \right)}}\\{K_a}\left( {{C_6}{H_5}NH_3^ + } \right) &= \frac{{1{0^{ - 14}}}}{{4.3 \times 1{0^{ - 10}}}}\\{K_a}\left( {{C_6}{H_5}NH_3^ + } \right) &= 2.3 \times 1{0^{ - 5}}\end{align}\)

Now that we know the Kavalues, we can calculate the pKa value for each acid using the formula:

\(\begin{align}p{K_a} &= - log{K_a}\\p{K_a}\left( {{{\left( {C{H_3}} \right)}_2}NH_2^ + } \right) &= - log\left( {1.7 \times 1{0^{ - 11}}} \right)\\p{K_a}\left( {{{\left( {C{H_3}} \right)}_2}NH_2^ + } \right) &= 10.77\\p{K_a}\left( {C{H_3}NH_3^ + } \right) &= - log\left( {2.3 \times 1{0^{ - 11}}} \right)\\p{K_a}\left( {C{H_3}NH_3^ + } \right) &= 10.64\end{align}\)

\(\begin{align}p{K_a}\left( {{{\left( {C{H_3}} \right)}_3}N{H^ + }} \right) &= - log\left( {1.6 \times 1{0^{ - 10}}} \right)\\p{K_a}\left( {{{\left( {C{H_3}} \right)}_3}N{H^ + }} \right) &= 9.80\\p{K_a}\left( {NH_4^ + } \right) &= - log\left( {5.6 \times 1{0^{ - 10}}} \right)\\p{K_a}\left( {NH_4^ + } \right) &= 9.25\\p{K_a}\left( {{C_6}{H_5}NH_3^ + } \right) &= - log\left( {2.3 \times 1{0^{ - 5}}} \right)\\p{K_a}\left( {{C_6}{H_5}NH_3^ + } \right) &= 4.64\end{align}\)

We can see from these pKa value that the pKa value for \(C{H_3}N{H_2}\) is the closest to our desired pH value of 10.65 and would, therefore, be the best choice for our buffer solution.

02

Final answer

\(C{H_3}N{H_2} \) would be the best choice for our buffer solution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

From the equilibrium concentrations given, calculate \({K_a}\)for each of the weak acids and \({K_b}\)for each of the weak bases.

\(\begin{aligned}(a)N{H_3}:\left( {O{H^ - }} \right) = 3.1 \times 1{0^{ - 3}}M\left( {NH_4^ + } \right) = 3.1 \times 1{0^{ - 3}}M;\left( {N{H_3}} \right) = 0.533M;\\(b)HN{O_2}:\left( {{H_3}{O^ + }} \right) = 0.011M;\left( {NO_2^ - } \right) = 0.0438M;\left( {HN{O_2}} \right) = 1.07M;\\(c){\left( {C{H_3}} \right)_3}\;N:\left( {{{\left( {C{H_3}} \right)}_3}\;N} \right) = 0.25M;\left( {{{\left( {C{H_3}} \right)}_3}N{H^ + }} \right) = 4.3 \times 1{0^{ - 3}}M;\left( {O{H^ - }} \right) = 4.3 \times 1{0^{ - 3}}M;\\(d)N{H_4} + :\left( {N{H_4} + } \right) = 0.100M;\left( {N{H_3}} \right) = 7.5 \times 1{0^{ - 6}}M;\left( {{H_3}{O^ + }} \right) = 7.5 \times 1{0^{ - 6}}M\end{aligned}\)

\(\begin{aligned}\left( {N{H_3}} \right) = 7.5 \times 1{0^{ - 6}}M\\\left( {{H_3}{O^ + }} \right) = 7.5 \times 1{0^{ - 6}}M\end{aligned}\)

White vinegar is a \(5.0 \% \) by mass solution of acetic acid in water. If the density of white vinegar is \(1.007\;g/c{m^3}\), what is the \(pH?\)

The ionization constant of lactic acid, \(C{H_3}CH(OH)C{O_2}H\), an acid found in the blood after strenuous exercise, is \(1.36 \times 1{0^{ - 4}}\). If \(20.0\;g\) of lactic acid is used to make a solution with a volume of \(1.00L\), what is the concentration of hydronium ion in the solution?

The \(pH\) of a solution of household ammonia, a \(0.950M\) solution of \(N{H_3}\), is \(11.612.\) Determine \({K_b} \)for \(N{H_3}\) from these data.

State which of the following species are amphiprotic and write chemical equations illustrating the amphiprotic character of these species.

\({\rm{\;(a)\;N}}{{\rm{H}}_3}\)

\({\rm{\;(b)\;HPO}}_4^ - \)

\({\rm{\;(c)\;B}}{{\rm{r}}^ - }\).

\({\rm{\;(d)\;N}}{{\rm{H}}_4} + \)

\({\rm{\;(e)\;ASO}}_4^{3 - }\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free