Calculating the weighted average is essential when dealing with atomic masses of elements. Unlike a simple average, a weighted average takes into account the "weight" or significance of each number in the set.
In our example of Gallium, the atomic mass of 69.723 amu is determined by the masses of its isotopes, Ga-69 and Ga-71, as well as their respective abundances in nature.
To calculate this, you would multiply the mass of each isotope by its relative abundance. Then, you sum these values to get the atomic mass. Hence:
-
Ga-69 contributes to the average mass based on its proportion in nature.
-
Ga-71 does the same, but proportionally less, if its abundance is lower.
The weighted average ensures that more abundant isotopes have a greater impact on the atomic mass. This is why Ga-69's greater abundance results in a higher influence on the atomic mass.