Chapter 2: Problem 29
Explain how dimensional analysis is used to solve problems.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 2: Problem 29
Explain how dimensional analysis is used to solve problems.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeComplete the following addition and subtraction problems in scientific notation. a. \(\left(6.23 \times 10^{6} \mathrm{kL}\right)+\left(5.34 \times 10^{6} \mathrm{kL}\right)\) b. \(\left(3.1 \times 10^{4} \mathrm{mm}\right)+\left(4.87 \times 10^{5} \mathrm{mm}\right)\) c. \(\left(7.21 \times 10^{3} \mathrm{mg}\right)+\left(43.8 \times 10^{2} \mathrm{mg}\right)\) d. \(\left(9.15 \times 10^{-4} \mathrm{cm}\right)+\left(3.48 \times 10^{-4} \mathrm{cm}\right)\) e. \(\left(4.68 \times 10^{-5} \mathrm{cg}\right)+\left(3.5 \times 10^{-6} \mathrm{cg}\right)\) f. \(\left(3.57 \times 10^{2} \mathrm{mL}\right)-\left(1.43 \times 10^{2} \mathrm{mL}\right)\) g. \(\left(9.87 \times 10^{4} \mathrm{g}\right)-\left(6.2 \times 10^{3} \mathrm{g}\right)\) h. \(\left(7.52 \times 10^{5} \mathrm{kg}\right)-\left(5.43 \times 10^{5} \mathrm{kg}\right)\) i. \(\left(6.48 \times 10^{-3} \mathrm{mm}\right)-\left(2.81 \times 10^{-3} \mathrm{mm}\right)\) j. \(\left(5.72 \times 10^{-4} \mathrm{dg}\right)-\left(2.3 \times 10^{-5} \mathrm{dg}\right)\)
Determine the number of significant figures in each measurement \(\begin{array}{ll}{\text { a. } 508.0 L} & {\text { c. } 1.0200 \times 10^{5} \mathrm{kg}} \\ {\text { b. } 820,400.0 \mathrm{L}} & {\text { d. } 807,000 \mathrm{kg}}\end{array}\)
Compare a base unit and a derived unit, and list the derived units used for density and volume
Write the following numbers in scientific notation. \(\begin{array}{ll}{\text { a. } 0.0045834 \mathrm{mm}} & {\text { c. } 438,904 \mathrm{s}} \\ {\text { b. } 0.03054 \mathrm{g}} & {\text { d. } 7,004,300,000 \mathrm{g}}\end{array}\)
Blood You have 15 g of hemoglobin in every 100 \(\mathrm{mL}\) of your blood. 10.0 \(\mathrm{mL}\) of your blood can carry 2.01 \(\mathrm{mL}\) of oxygen. How many milliters of oxygen does each gram of hemoglobin carry?
What do you think about this solution?
We value your feedback to improve our textbook solutions.