Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Given two solutions, 0.10 \(\mathrm{M} \mathrm{HCl}\) and 0.10 \(\mathrm{M}\) HF, which solution has the greater concentration of \(\mathrm{H}^{+}\) ions? Calculate pH values for the two solutions, given that \(\left[\mathrm{H}^{+}\right]=7.9 \times 10^{-3} \mathrm{M}\) in the 0.10 \(\mathrm{M} \mathrm{HF}\)

Short Answer

Expert verified
The HCl solution has a pH of 1.0, and the HF solution has a pH of 2.1. Since the HCl solution has a lower pH, it is more acidic and has a higher concentration of H+ ions compared to the HF solution.

Step by step solution

01

Calculate the H+ Concentration in HCl Solution

HCl is a strong acid, which means it fully dissociates in water into H+ and Cl- ions. Therefore, the concentration of H+ ions in the HCl solution will be the same as the concentration of HCl: 0.10 M.
02

Calculate the pH of the HCl Solution

To find the pH of the HCl solution, use the pH formula: pH = -log[H+]. Substitute the given H+ concentration (0.10 M) into the formula: pH = -log(0.10) = 1.0
03

Calculate the pH of the HF Solution

We're given the concentration of H+ ions in the HF solution, which is 7.9 x 10^-3 M. Use the pH formula again to find the pH of the HF solution: pH = -log(7.9 x 10^-3) ≈ 2.1
04

Compare the pH Values and H+ Concentrations

Now that we have the pH values for both solutions, we can compare them: - HCl solution: pH = 1.0 - HF solution: pH = 2.1 The HCl solution has a lower pH, meaning it is more acidic and therefore has a higher concentration of H+ ions compared to the HF solution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

pH calculation
Calculating the pH of a solution helps us understand its acidity or alkalinity. pH is a scale used to specify the acidity or basicity of an aqueous solution. It is a dimensionless number generally ranging from 0 to 14. To calculate pH, you use the formula:
  • \( \text{pH} = -\log[\text{H}^+] \)
The pH value tells you how acidic or basic a solution is.
For instance, a pH of 1 is very acidic, whereas a pH of 14 is very basic. A neutral solution, like pure water, has a pH of 7.
The pH scale is logarithmic, so a change in one pH unit represents a tenfold change in the concentration of hydrogen ions \(\text{H}^+\) in the solution.
strong acid
A strong acid completely dissociates in solution. This means it splits into its ions – specifically, it releases all of its hydrogen ions \(\text{H}^+\) into the solution.
Examples of strong acids include hydrochloric acid (HCl), sulfuric acid (H2SO4), and nitric acid (HNO3).
  • For a strong acid like HCl, if you have a 0.10 M solution, the concentration of \(\text{H}^+\) ions will also be 0.10 M.
This is because each molecule of strong acid dissociates completely to release one \(\text{H}^+\) ion.
Due to this full dissociation, strong acids generally have very low pH values, indicating high acidity.
weak acid
A weak acid does not fully dissociate in solution. This means that only a fraction of its molecules release hydrogen ions \(\text{H}^+\) into the solution.
Examples of weak acids include acetic acid (CH3COOH) and hydrofluoric acid (HF).
  • For weak acids, the concentration of \(\text{H}^+\) ions in the solution is typically much lower than the initial concentration of the acid.
Let's take HF as an example: in a 0.10 M HF solution, the \(\text{H}^+\) ion concentration might be 7.9 x 10^-3 M, as seen in our calculation.
This partial dissociation results in higher pH values compared to strong acids of the same concentration.
H+ concentration
The concentration of hydrogen ions \(\text{H}^+\) is crucial in determining the acidity of a solution.
This is because the pH of a solution is directly related to the \([\text{H}^+]\) concentration. As mentioned before, the pH is calculated as \(\text{pH} = -\log[\text{H}^+]\).
  • A higher concentration of \(\text{H}^+\) ions means a lower pH, indicating a more acidic solution.
  • For example, in a 0.10 M HCl solution, the \(\text{H}^+\) concentration is 0.10 M, resulting in a pH of 1.0.
  • Conversely, a lower \(\text{H}^+\) concentration, such as 7.9 x 10^-3 M in HF, results in a pH of 2.1, which is less acidic.
Understanding \([\text{H}^+]\) helps us appreciate how acidic a solution is and how the strength of the acid affects the overall pH.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free