Chapter 9: Problem 82
There are two compounds of the formula \(\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\) : The compound on the right, cisplatin, is used in cancer therapy. The compound on the left, transplatin, is ineffective for cancer therapy. Both compounds have a square-planar geometry. (a) Which compound has a nonzero dipole moment? (b) The reason cisplatin is a good anticancer drug is that it binds tightly to DNA. Cancer cells are rapidly dividing, producing a lot of DNA. Consequently cisplatin kills cancer cells at a faster rate than normal cells. However, since normal cells also are making DNA, cisplatin also attacks healthy cells, which leads to unpleasant side effects. The way both molecules bind to DNA involves the \(\mathrm{Cl}^{-}\) ions leaving the Pt ion, to be replaced by two nitrogens in DNA. Draw a picture in which a long vertical line represents a piece of DNA. Draw the \(\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\) fragments of cisplatin and transplatin with the proper shape. Also draw them attaching to your DNA line. Can you explain from your drawing why the shape of the cisplatin causes it to bind to DNA more effectively than transplatin?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.