Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is meant by the term orbital overlap? (b) Describe what a chemical bond is in terms of electron density between two atoms.

Short Answer

Expert verified
(a) Orbital overlap refers to the interaction of electron clouds surrounding atomic nuclei when two atoms approach each other, which influences chemical bond formation and strength. (b) A chemical bond is formed when two atomic orbitals with their respective electron densities come close enough, leading to a region of enhanced electron density (covalent bond) that effectively "glues" the atoms together by balancing the repulsion between the positively charged nuclei. The greater the electron density in a chemical bond, the stronger the bond and the lower its potential energy.

Step by step solution

01

Define Orbital Overlap

Orbital overlap is the interaction of the electron cloud surrounding atomic nuclei when two atoms approach each other. It is a significant factor in the formation and strength of chemical bonds. In a valance atomic orbital (VAO), the electron density around the nucleus increases, which enhances orbital overlap. This interaction leads to the potential for bond formation through electron sharing.
02

Describe a Chemical Bond in Terms of Electron Density

Now, let's talk about chemical bonds in terms of electron density between the two interacting atoms. A chemical bond is formed when two atomic orbitals, each with its own electron density, come close enough together. This spatial overlap of atomic orbitals results in a region of enhanced electron density between the two atoms, known as a covalent bond. The increased electron density between the nuclei effectively "glues" the atoms together, as the mutual attraction between the nuclei and the shared electron pair helps balance the repulsion between the positively charged nuclei. In some cases, the electron clouds do not overlap directly but instead interact through the position of the electron density, as in the case of dative or coordinate bonds. The greater the electron density in a chemical bond, the stronger the bond, and the lower its potential energy.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Draw the Lewis structure for each of the following molecules or ions, and predict their electron-domain and molecular geometries: (a) \(\mathrm{PF}_{3}\), (b) \(\mathrm{CH}_{3}{ }^{+}\), (c) \(\mathrm{BrF}_{3}\), (d) \(\mathrm{ClO}_{4}^{-}(\mathrm{e}) \mathrm{XeF}_{2}\), (f) \(\mathrm{BrO}_{2}^{-}\).

Many compounds of the transition-metal elements contain direct bonds between metal atoms. We will assume that the \(z\) -axis is defined as the metal-metal bond axis. (a) Which of the \(3 d\) orbitals (Figure 6.24) can be used to make a \(\sigma\) bond between metal atoms? (b) Sketch the \(\sigma_{3 d}\) bonding and \(\sigma_{3 d}^{*}\) antibonding MOs. (c) With reference to the "Closer Look" box on the phases of orbitals, explain why a node is generated in the \(\sigma_{3 d}^{*}\) MO. (d) Sketch the energy-level diagram for the \(\mathrm{Sc}_{2}\) molecule, assuming that only the \(3 d\) orbital from part (a) is important. (e) What is the bond order in \(\mathrm{Sc}_{2} ?\)

Explain the following (a) The peroxide ion, \(\mathrm{O}_{2}{ }^{2-}\), has a longer bond length than the superoxide ion, \(\mathrm{O}_{2}^{-} \cdot\) (b) The magnetic properties of \(\mathrm{B}_{2}\) are consistent with the \(\pi_{2 p}\) MOs being lower in energy than the \(\sigma_{2 p}\) MO. (c) The \(\mathrm{O}_{2}^{2+}\) ion has a stronger \(\mathrm{O}\) - \(\mathrm{O}\) bond than \(\mathrm{O}_{2}\) itself.

(a) Draw a picture showing how two \(p\) orbitals on two different atoms can be combined to make a sigma bond. (b) Sketch a \(\pi\) bond that is constructed from \(p\) orbitals. (c) Which is generally stronger, a \(\sigma\) bond or a \(\pi\) bond? Explain. (d) Can two s orbitals make a \(\pi\) bond? Explain.

From their Lewis structures, determine the number of \(\sigma\) and \(\pi\) bonds in each of the following molecules or ions: (a) \(\mathrm{CO}_{2} ;\) (b) thiocyanate ion, \(\mathrm{NCS}^{-}\) : (c) formaldehyde, \(\mathrm{H}_{2} \mathrm{CO} ;\) (d) formic acid, \(\mathrm{HCOOH}\), which has one \(\mathrm{H}\) and two \(\mathrm{O}\) atoms attached to \(\mathrm{C}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free