Chapter 9: Problem 34
(a) What conditions must be met if a molecule with polar bonds is nonpolar? (b) What geometries will give nonpolar molecules for \(\mathrm{AB}_{2}, \mathrm{AB}_{3}\), and \(\mathrm{AB}_{4}\) geometries?
Chapter 9: Problem 34
(a) What conditions must be met if a molecule with polar bonds is nonpolar? (b) What geometries will give nonpolar molecules for \(\mathrm{AB}_{2}, \mathrm{AB}_{3}\), and \(\mathrm{AB}_{4}\) geometries?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe three species \(\mathrm{NH}_{2}^{-} \mathrm{NH}_{3}\), and \(\mathrm{NH}_{4}{ }^{+}\) have \(\mathrm{H}-\mathrm{N}-\mathrm{H}\) bond angles of \(105^{\circ}, 107^{\circ}\), and \(109^{\circ}\), respec- tively. Explain this variation in hond
(a) What does the term diamagnetism mean? (b) How does a diamagnetic substance respond to a magnetic field? (c) Which of the following ions would you expect to be diamagnetic: \(\mathrm{N}_{2}{ }^{2-}, \mathrm{O}_{2}{ }^{2-}, \underline{\mathrm{Be}_{2}}^{2+}, \mathrm{C}_{2}{ }^{-} ?\)
How would you expect the extent of overlap of atomic orbitals to vary in the series IF, ICl, \(\mathrm{IBr}\), and \(\mathrm{I}_{2}\) ?
(a) What does the term paramagnetism mean? (b) How can one determine experimentally whether a substance is paramagnetic? (c) Which of the following ions would you expect to be paramagnetic: \(\mathrm{O}_{2}{ }^{+}, \mathrm{N}_{2}{ }^{2-}, \mathrm{Li}_{2}{ }^{+}, \mathrm{O}_{2}{ }^{2-} ?\) For those ions that are paramagnetic, determine the number of unpaired electrons.
Propylene, \(\mathrm{C}_{3} \mathrm{H}_{4}\) is a gas that is used to form the important polymer called polypropylene. Its Lewis structure is (a) What is the total number of valence electrons in the propylene molecule? (b) How many valence electrons are used to make \(\sigma\) bonds in the molecule? (c) How many valence electrons are used to make \(\pi\) bonds in the molecule? (d) How many valence electrons remain in nonbonding pairs in the molecule? (e) What is the hybridization at each carbon atom in the molecule?
What do you think about this solution?
We value your feedback to improve our textbook solutions.