Chapter 9: Problem 17
What is the difference between the electron-domain geometry and the molecular geometry of a molecule? Use the water molecule as an example in your discussion.
Chapter 9: Problem 17
What is the difference between the electron-domain geometry and the molecular geometry of a molecule? Use the water molecule as an example in your discussion.
All the tools & learning materials you need for study success - in one app.
Get started for freeDraw the Lewis structure for each of the following molecules or ions, and predict their electron-domain and molecular geometries: (a) \(\mathrm{PF}_{3}\), (b) \(\mathrm{CH}_{3}{ }^{+}\), (c) \(\mathrm{BrF}_{3}\), (d) \(\mathrm{ClO}_{4}^{-}(\mathrm{e}) \mathrm{XeF}_{2}\), (f) \(\mathrm{BrO}_{2}^{-}\).
Figure \(9.47\) shows how the magnetic properties of a compound can be measured experimentally. When such measurements are made, the sample is generally covered by an atmosphere of pure nitrogen gas rather than air. Why do you suppose this is done?
(a) Methane \(\left(\mathrm{CH}_{4}\right)\) and the perchlorate ion \(\left(\mathrm{ClO}_{6}\right)\) are both described as tetrahedral. What does this indicate about their bond angles? (b) The \(\mathrm{NH}_{3}\) molecule is trigonal pyramidal, while \(\mathrm{BF}_{3}\) is trigonal planar. Which of these molecules is flat?
(a) What is the physical basis for the VSEPR model? (b) When applying the VSEPR model, we count a double or triple bond as a single electron domain. Why is this justified?
The reaction of three molecules of fluorine gas with a Xe atom produces the substance xenon hexafluoride, \(\mathrm{XeF}_{6}\) : $$ \mathrm{Xe}(g)+3 \mathrm{~F}_{2}(g) \longrightarrow \mathrm{XeF}_{6}(s) $$ (a) Draw a Lewis structure for \(\mathrm{XeF}_{6}\). (b) If you try to use the VSEPR model to predict the molecular geometry of \(\mathrm{XeF}_{6 r}\) you run into a problem. What is it? (c) What could you do to resolve the difficulty in part (b)? (d) Suggest a hybridization scheme for the Xe atom in \(\mathrm{XeF}_{6}\). (e) The molecule \(\mathrm{IF}_{7}\) has a pentagonal- bipyramidal structure (five equatorial fluorine atoms at the vertices of a regular pentagon and two axial fluorine atoms). Based on the structure of \(\mathrm{IF}_{7}\), suggest a structure for \(\mathrm{XeF}_{6}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.