Chapter 7: Problem 96
Use orbital diagrams to illustrate what happens when an oxygen atom gains two electrons. Why is it extremely difficult to add a third electron to the atom?
Chapter 7: Problem 96
Use orbital diagrams to illustrate what happens when an oxygen atom gains two electrons. Why is it extremely difficult to add a third electron to the atom?
All the tools & learning materials you need for study success - in one app.
Get started for freeHow are metallic character and first ionization energy related?
One way to measure ionization energies is photoelectron spectroscopy (PES), a technique based on the photoelectric effect. em (Section 6.2) In PES, monochromatic light is directed onto a sample, causing electrons to be emitted. The kinetic energy of the emitted electrons is measured. The difference between the energy of the photons and the kinetic energy of the electrons corresponds to the energy needed to remove the electrons (that is, the ionization energy). Suppose that a PES experiment is performed in which mercury vapor is irradiated with ultraviolet light of wavelength \(58.4 \mathrm{~nm}\). (a) What is the energy of a photon of this light, in \(\mathrm{eV}\) ? (b) Write an equation that shows the process corresponding to the first ionization energy of \(\mathrm{Hg}\). (c) The kinetic energy of the emitted electrons is measured to be \(10.75 \mathrm{eV}\). What is the first ionization energy of \(\mathrm{Hg}\), in \(\mathrm{kJ} / \mathrm{mol} ?\) (d) With reference to Figure \(7.11\), determine which of the halogen elements has a first ionization energy closest to that of mercury.
Consider the first ionization energy of neon and the electron affinity of fluorine. (a) Write equations, including electron configurations, for each process. (b) These two quantities will have opposite signs. Which will be positive, and which will be negative? (c) Would you expect the magnitudes of these two quantities to be equal? If not, which one would you expect to be larger? Explain your answer.
There are certain similarities in properties that exist between the first member of any periodic family and the element located below it and to the right in the periodic table. For example, in some ways Li resembles \(\mathrm{Mg}\), Be resembles \(\mathrm{Al}\), and so forth. This observation is called the diagonal relationship. Using what we have learned in this chapter, offer a possible explanation for this relationship.
(a) What is the trend in first ionization energies as one proceeds down the group 7 A elements? Explain how this trend relates to the variation in atomic radii. (b) What is the trend in first ionization energies as one moves across the fourth period from \(\mathrm{K}\) to \(\mathrm{Kr}\) ? How does this trend compare with the trend in atomic radii?
What do you think about this solution?
We value your feedback to improve our textbook solutions.