Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write a balanced equation for the reaction that occurs in each of the following cases: (a) Chlorine reacts with water. (b) Barium metal is heated in an atmosphere of hydrogen gas. (c) Lithium reacts with sulfur. (d) Fluorine reacts with magnesium metal.

Short Answer

Expert verified
The balanced chemical equations for the given reactions are: a) Cl2 + H2O → HCl + HClO b) Ba + H2 → BaH2 c) 2 Li + S → Li2S d) F2 + Mg → MgF2

Step by step solution

01

Identify the reactants and products

a) Chlorine reacts with water: Reactants: Chlorine (Cl2) and water (H2O). Products: Hydrochloric acid (HCl) and hypochlorous acid (HClO). b) Barium metal is heated in an atmosphere of hydrogen gas: Reactants: Barium metal (Ba) and hydrogen gas (H2). Product: Barium hydride (BaH2). c) Lithium reacts with sulfur: Reactants: Lithium (Li) and sulfur (S). Product: Lithium sulfide (Li2S). d) Fluorine reacts with magnesium metal: Reactants: Fluorine (F2) and magnesium (Mg). Product: Magnesium fluoride (MgF2).
02

Write the unbalanced chemical equation

a) Cl2 + H2O → HCl + HClO b) Ba + H2 → BaH2 c) Li + S → Li2S d) F2 + Mg → MgF2
03

Balance the chemical equation

a) The balanced equation for chlorine reacting with water is: Cl2 + H2O → HCl + HClO b) The balanced equation for barium metal being heated in an atmosphere of hydrogen gas is: Ba + H2 → BaH2 c) The balanced equation for lithium reacting with sulfur is: 2 Li + S → Li2S d) The balanced equation for fluorine reacting with magnesium metal: F2 + Mg → MgF2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider \(\mathrm{S}, \mathrm{Cl}\), and \(\mathrm{K}\) and their most common ions. (a) List the atoms in order of increasing size (b) List the ions in order of increasing size. (c) Explain any differences in the orders of the atomic and ionic sizes.

(a) Why are ionization energies always positive quantities? (b) Why does \(\mathrm{F}\) have a larger first ionization energy than \(\mathrm{O}\) ? (c) Why is the second ionization energy of an atom always greater than its first ionization energy?

In the chemical process called electron transfer, an electron is transferred from one atom or molecule to another (We will talk about electron transfer extensively in Chapter 20.) A simple electron transfer reaction is $$ \mathrm{A}(g)+\mathrm{A}(g) \longrightarrow \mathrm{A}^{+}(g)+\mathrm{A}^{-}(g) $$ In terms of the ionization energy and electron affinity of atom A, what is the energy change for this reaction? For a representative nonmetal such as chlorine, is this process exothermic? For a representative metal such as sodium, is this process exothermic? [Sections \(7.4\) and \(7.51\)

One way to measure ionization energies is photoelectron spectroscopy (PES), a technique based on the photoelectric effect. em (Section 6.2) In PES, monochromatic light is directed onto a sample, causing electrons to be emitted. The kinetic energy of the emitted electrons is measured. The difference between the energy of the photons and the kinetic energy of the electrons corresponds to the energy needed to remove the electrons (that is, the ionization energy). Suppose that a PES experiment is performed in which mercury vapor is irradiated with ultraviolet light of wavelength \(58.4 \mathrm{~nm}\). (a) What is the energy of a photon of this light, in \(\mathrm{eV}\) ? (b) Write an equation that shows the process corresponding to the first ionization energy of \(\mathrm{Hg}\). (c) The kinetic energy of the emitted electrons is measured to be \(10.75 \mathrm{eV}\). What is the first ionization energy of \(\mathrm{Hg}\), in \(\mathrm{kJ} / \mathrm{mol} ?\) (d) With reference to Figure \(7.11\), determine which of the halogen elements has a first ionization energy closest to that of mercury.

Consider the gas-phase transfer of an electron from a sodium atom to a chlorine atom: $$ \mathrm{Na}(\mathrm{g})+\mathrm{Cl}(\mathrm{g}) \longrightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(g) $$ (a) Write this reaction as the sum of two reactions, one that relates to an ionization energy and one that relates to an electron affinity. (b) Use the result from part (a), data in this chapter, and Hess's law to calculate the enthalpy of the above reaction. Is the reaction exothermic or endothermic? (c) The reaction between sodium metal and chlorine gas is highly exothermic and produces \(\mathrm{NaCl}(\mathrm{s})\), whose structure was discussed in Section 2.7. Comment on this observation relative to the calculated enthalpy for the aforementioned gas-phase reaction.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free