Chapter 7: Problem 43
(a) What is the general relationship between the size of an atom and its first ionization energy? (b) Which element in the periodic table has the largest ionization energy? Which has the smallest?
Chapter 7: Problem 43
(a) What is the general relationship between the size of an atom and its first ionization energy? (b) Which element in the periodic table has the largest ionization energy? Which has the smallest?
All the tools & learning materials you need for study success - in one app.
Get started for freeArrange the following oxides in order of increasing acidity: \(\mathrm{CO}_{2}, \mathrm{CaO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SO}_{3}, \mathrm{SiO}_{2}\), and \(\mathrm{P}_{2} \mathrm{O}_{5}\)
For each of the following statements, provide an explanation (a) \(\mathrm{O}^{2-}\) is larger than \(\mathrm{O} ;\) (b) \(\mathrm{S}^{2-}\) is larger than \(\mathrm{O}^{2-}\) : (c) \(S^{2-}\) is larger than \(K^{+}\); (d) \(\mathrm{K}^{+}\) is larger than \(\mathrm{Ca}^{2+}\).
Write a balanced equation for the reaction that occurs in each of the following cases: (a) Potassium metal burns in an atmosphere of chlorine gas, (b) Strontium oxide is added to water. (c) A fresh surface of lithium metal is exposed to oxygen gas. (d) Sodium metal is reacted with molten sulfur.
When magnesium metal is burned in air (Figure 3.5), two products are produced. One is magnesium oxide, \(\mathrm{MgO}\). The other is the product of the reaction of \(\mathrm{Mg}\) with molecular nitrogen, magnesium nitride. When water is added to magnesium nitride, it reacts to form magnesium oxide and ammonia gas. (a) Based on the charge of the nitride ion (Table 2.5), predict the formula of magnesium nitride. (b) Write a balanced equation for the reaction of magnesium nitride with water. What is the driving force for this reaction? (c) In an experiment a piece of magnesium ribbon is burned in air in a crucible. The mass of the mixture of \(\mathrm{MgO}\) and magnesium nitride after burning is \(0.470 \mathrm{~g}\). Water is added to the crucible, further reaction occurs, and the crucible is heated to dryness until the final product is \(0.486 \mathrm{~g}\) of \(\mathrm{MgO}\). What was the mass percentage of magnesium nitride in the mixture obtained after the initial burning? (d) Magnesium nitride can also be formed by reaction of the metal with ammonia at high temperature. Write a balanced equation for this reaction. If a \(6.3-\mathrm{g} \mathrm{Mg}\) ribbon reacts with \(2.57 \mathrm{~g} \mathrm{NH}_{3}(\mathrm{~g})\) and the reaction goes to \(\mathrm{com}\) pletion, which component is the limiting reactant? What mass of \(\mathrm{H}_{2}(\mathrm{~g})\) is formed in the reaction? (e) The standard enthalpy of formation of solid magnesium nitride is \(-461.08 \mathrm{~kJ} / \mathrm{mol}\). Calculate the standard enthalpy change for the reaction between magnesium metal and ammonia gas.
(a) Why are ionization energies always positive quantities? (b) Why does \(\mathrm{F}\) have a larger first ionization energy than \(\mathrm{O}\) ? (c) Why is the second ionization energy of an atom always greater than its first ionization energy?
What do you think about this solution?
We value your feedback to improve our textbook solutions.