Chapter 5: Problem 91
An aluminum can of a soft drink is placed in a freezer. Later, you find that the can is split open and its contents frozen. Work was done on the can in splitting it open. Where did the energy for this work come from?
Chapter 5: Problem 91
An aluminum can of a soft drink is placed in a freezer. Later, you find that the can is split open and its contents frozen. Work was done on the can in splitting it open. Where did the energy for this work come from?
All the tools & learning materials you need for study success - in one app.
Get started for freeA \(1.800-g\) sample of phenol \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)\) was burned in a bomb calorimeter whose total heat capacity is \(11.66 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}\). The temperature of the calorimeter plus contents increased from \(21.36^{\circ} \mathrm{C}\) to \(26.37^{\circ} \mathrm{C}\). (a) Write a balanced chemical equation for the bomb calorimeter reaction. (b) What is the heat of combustion per gram of phenol? Per mole of phenol?
A \(2.200-g\) sample of quinone \(\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\) is burned in a bomb calorimeter whose total heat capacity is \(7.854 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}\). The temperature of the calorimeter increases from \(23.44^{\circ} \mathrm{C}\) to \(30.57^{\circ} \mathrm{C}\). What is the heat of combustion per gram of quinone? Per mole of quinone?
(a) Under what condition will the enthalpy change of a process equal the amount of heat transferred into or out of the system? (b) During a constant- pressure process the system absorbs heat from the surroundings. Does the enthalpy of the system increase or decrease during the process?
When a mole of dry ice, \(\mathrm{CO}_{2}(s)\), is converted to \(\mathrm{CO}_{2}(g)\) at atmospheric pressure and \(-78{ }^{\circ} \mathrm{C}\), the heat absorbed by the system exceeds the increase in internal energy of the \(\mathrm{CO}_{2}\). Why is this so? What happens to the remaining energy?
Identify the force present, and explain whether work is done when (a) a positively charged particle moves in a circle at a fixed distance from a negatively charged particle; (b) an iron nail is pulled off a magnet.
What do you think about this solution?
We value your feedback to improve our textbook solutions.