Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Naphthalene \(\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)\) is a solid aromatic compound often sold as mothballs. The complete combustion of this substance to yield \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(l)\) at \(25^{\circ} \mathrm{C}\) yields \(5154 \mathrm{~kJ} / \mathrm{mol}\). (a) Write balanced equations for the formation of naphthalene from the elements and for its combustion. (b) Calculate the standard enthalpy of formation of naphthalene.

Short Answer

Expert verified
The standard enthalpy of formation of naphthalene \(\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)\) is -3343.2 kJ/mol, which was calculated using balanced equations for its formation from elements and combustion, as well as applying Hess's law.

Step by step solution

01

Writing the balanced equation for the formation of naphthalene from its elements

To form naphthalene \(\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)\) from its elements, we combine carbon (C) and hydrogen (H) elements. The balanced equation for this reaction can be given as: \( 10\: \mathrm{C}(s) + 4\: \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{10} \mathrm{H}_{8}(s) \)
02

Writing the balanced equation for the combustion of naphthalene

Naphthalene reacts with oxygen gas (\(\mathrm{O}_{2}\)) during combustion and forms carbon dioxide (\(\mathrm{CO}_{2}\)) and water (\(\mathrm{H}_{2}\: \mathrm{O}\)). The balanced equation can be written as: \( \mathrm{C}_{10} \mathrm{H}_{8}(s) + 12\: \mathrm{O}_{2}(g) \rightarrow 10\: \mathrm{CO}_{2}(g) + 4\: \mathrm{H}_{2} \mathrm{O}(l) \)
03

Calculating the standard enthalpy of formation of naphthalene

We are given that the enthalpy change, ΔH, for the combustion of naphthalene is -5154 kJ/mol. We can use the combustion equation and Hess's law to calculate the standard enthalpy of formation of naphthalene. Let ΔHf represent the enthalpy of formation of naphthalene, then: Formation of naphthalene: \( 10\: \mathrm{C}(s) + 4\: \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{10} \mathrm{H}_{8}(s), \Delta H = \Delta H_{f}\) Combustion of naphthalene: \( \mathrm{C}_{10} \mathrm{H}_{8}(s) + 12\: \mathrm{O}_{2}(g)\rightarrow 10\: \mathrm{CO}_{2}(g) + 4\: \mathrm{H}_{2} \mathrm{O}(l), \Delta H = -5154 \: \mathrm{kJ/mol} \) Connecting these two reactions using Hess's law: \( 10\: \mathrm{C}(s) + 4\: \mathrm{H}_{2}(g) + 12\: \mathrm{O}_{2}(g) \rightarrow 10\: \mathrm{CO}_{2}(g) + 4\: \mathrm{H}_{2} \mathrm{O}(l) \) We can find the enthalpy changes for the reaction of the carbon and hydrogen elements with oxygen: Formation of \(\mathrm{CO_{2}}\): \( \mathrm{C}(s) + \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H = -393.5 \: \mathrm{kJ/mol} \) Formation of \(\mathrm{H_{2}O}\): \( \mathrm{H}_{2}(g) + \frac{1}{2} \: \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l), \Delta H = -285.8 \: \mathrm{kJ/mol} \) Applying Hess's Law: \( \Delta H_{f} + (-5154) = 10 \times (-393.5) + 4 \times (-285.8) \) Solve for ΔHf: \( \Delta H_{f} = 10 \times (-393.5) + 4 \times (-285.8) + 5154 \) \( \Delta H_{f} = -3343.2\: \mathrm{kJ/mol}\) Thus, the standard enthalpy of formation of naphthalene is -3343.2 kJ/mol.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Calculate the standard enthalpy of formation of gaseous diborane \(\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)\) using the following thermochemical information: \(\begin{array}{clrl}4 \mathrm{~B}(\mathrm{~s})+3 \mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{~B}_{2} \mathrm{O}_{3}(s) & \Delta H^{\circ}=-2509.1 \mathrm{~kJ} \\ 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) & \Delta H^{\circ}= & -571.7 \mathrm{~kJ} \\\ \mathrm{~B}_{2} \mathrm{H}_{6}(g)+3 \mathrm{O}_{2}(g) & \longrightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(l) & \Delta H^{\circ}=-2147.5 \mathrm{~kJ}\end{array}\) (b) Pentaborane \(\left(\mathrm{B}_{5} \mathrm{H}_{9}\right)\) is another boron hydride. What experiment or experiments would you need to perform to yield the data necessary to calculate the heat of formation of \(\mathrm{B}_{5} \mathrm{H}_{9}(l) ?\) Explain by writing out and summing any applicable chemical reactions.

Calculate the enthalpy change for the reaction $$ \mathrm{P}_{4} \mathrm{O}_{6}(s)+2 \mathrm{O}_{2}(g) \cdots \mathrm{P}_{4} \mathrm{O}_{10}(s) $$ given the following enthalpies of reaction: $$ \begin{array}{ll} \mathrm{P}_{4}(\mathrm{~s})+3 \mathrm{O}_{2}(g) \rightarrow \mathrm{P}_{4} \mathrm{O}_{6}(s) & \Delta H=-1640.1 \mathrm{~kJ} \\ \mathrm{P}_{4}(s)+5 \mathrm{O}_{2}(g)-\cdots & \mathrm{P}_{4} \mathrm{O}_{1} 0(s) & \Delta H=-2940.1 \mathrm{~kJ} \end{array} $$

(a) Calculate the kinetic energy in joules of a \(45-\mathrm{g}\) golf ball moving at \(61 \mathrm{~m} / \mathrm{s}\). (b) Convert this energy to calories. (c) What happens to this energy when the ball lands in a sand trap?

From the following data for three prospective fuels, calculate which could provide the most energy per unit volume:$$ \begin{array}{lcc} & \begin{array}{c} \text { Density } \\ \text { at } 20^{\circ} \mathrm{C} \\ \left(\mathrm{g} / \mathrm{cm}^{3}\right) \end{array} & \begin{array}{c} \text { Molar Enthalpy } \\ \text { of Combustion } \\ \text { Fuel } \end{array} & \mathrm{kJ} / \mathrm{mol} \\ \hline \text { Nitroethane, } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}(l) & 1.052 & -1368 \\ \text { Ethanol, } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) & 0.789 & -1367 \\ \text { Methylhydrazine, } \mathrm{CH}_{6} \mathrm{~N}_{2}(l) & 0.874 & -1305 \end{array} $$

Methanol \(\left(\mathrm{CH}_{3} \mathrm{OH}\right)\) is used as a fuel in race cars. (a) Write a balanced equation for the combustion of liquid methanol in air. (b) Calculate the standard enthalpy change for the reaction, assuming \(\mathrm{H}_{2} \mathrm{O}(g)\) as a product. (c) Calculate the heat produced by combustion per liter of methanol. Methanol has a density of \(0.791 \mathrm{~g} / \mathrm{mL}\) (d) Calculate the mass of \(\mathrm{CO}_{2}\) produced per \(\mathrm{kJ}\) of heat emitted.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free