Chapter 5: Problem 65
(a) What is meant by the term standard conditions, with reference to enthalpy changes? (b) What is meant by the term enthalpy of formation? (c) What is meant by the term standard enthalpy of formation?
Chapter 5: Problem 65
(a) What is meant by the term standard conditions, with reference to enthalpy changes? (b) What is meant by the term enthalpy of formation? (c) What is meant by the term standard enthalpy of formation?
All the tools & learning materials you need for study success - in one app.
Get started for free(a) What is work? (b) How do we determine the amount of work done, given the force associated with the work?
Consider the combustion of a single molecule of \(\mathrm{CH}_{4}(g)\) forming \(\mathrm{H}_{2} \mathrm{O}(l)\) as a product. (a) How much energy, in J. is produced during this reaction? (b) A typical X-ray photon has an energy of \(8 \mathrm{keV}\). How does the energy of combustion compare to the energy of the X-ray photon?
When a 9.55-g sample of solid sodium hydroxide dissolves in \(100.0 \mathrm{~g}\) of water in a coffee-cup calorimeter (Figure 5.17), the temperature rises from \(23.6^{\circ} \mathrm{C}\) to \(47.4^{\circ} \mathrm{C}\). Calculate \(\Delta H\) (in \(\mathrm{kJ} / \mathrm{mol} \mathrm{NaOH}\) ) for the solution process $$ \mathrm{NaOH}(s) \stackrel{-\cdots}{\mathrm{Na}}^{+}(a q)+\mathrm{OH}^{-}(a q) $$ Assume that the specific heat of the solution is the same as that of pure water.
(a) When a \(3.88-g\) sample of solid ammonium nitrate dissolves in \(60.0 \mathrm{~g}\) of water in a coffee-cup calorimeter (Figure 5.17), the temperature drops from \(23.0^{\circ} \mathrm{C}\) to \(18.4^{\circ} \mathrm{C}\). Calculate \(\Delta H\) (in \(\mathrm{kJ} / \mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{3}\) ) for the solu- tion process $$ \mathrm{NH}_{4} \mathrm{NO}_{3}(s)-\mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) $$ Assume that the specific heat of the solution is the same as that of pure water. (b) Is this process endothermic or exothermic?
It is estimated that the net amount of carbon dioxide fixed by photosynthesis on the landmass of Earth is \(5.5 \times\) \(10^{16} \mathrm{~g} / \mathrm{yr}\) of \(\mathrm{CO}_{2}\). Assume that all this carbon is converted into glucose. (a) Calculate the energy stored by photosynthesis on land per year in \(\mathrm{kJ}\). (b) Calculate the average rate of conversion of solar energy into plant energy in MW \((1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s})\). A large nuclear power plant produces about \(10^{3} \mathrm{MW}\). The energy of how many such nuclear power plants is equivalent to the solar energy conversion?
What do you think about this solution?
We value your feedback to improve our textbook solutions.