Chapter 5: Problem 33
You are given \(\Delta H\) for a process that occurs at constant pressure. What additional information do you need to determine \(\Delta E\) for the process?
Chapter 5: Problem 33
You are given \(\Delta H\) for a process that occurs at constant pressure. What additional information do you need to determine \(\Delta E\) for the process?
All the tools & learning materials you need for study success - in one app.
Get started for freeImagine that you are climbing a mountain. (a) Is the distance you travel to the top a state function? Why or why not? (b) Is the change in elevation between your base camp and the peak a state function? Why or why not? [Section 5.2]
(a) Why are fats well suited for energy storage in the human body? (b) A particular chip snack food is composed of \(12 \%\) protein, \(14 \%\) fat, and the rest carbohydrate. What percentage of the calorie content of this food is fat? (c) How many grams of protein provide the same fuel value as \(25 \mathrm{~g}\) of fat?
(a) What is meant by the term standard conditions, with reference to enthalpy changes? (b) What is meant by the term enthalpy of formation? (c) What is meant by the term standard enthalpy of formation?
Consider two solutions, the first being \(50.0 \mathrm{~mL}\) of \(1.00 \mathrm{M}\) \(\mathrm{CuSO}_{4}\) and the second \(50.0 \mathrm{~mL}\) of \(2.00 \mathrm{M} \mathrm{KOH}\). When the two solutions are mixed in a constant-pressure calorimeter, a precipitate forms and the temperature of the mixture rises from \(21.5^{\circ} \mathrm{C}\) to \(27.7^{\circ} \mathrm{C}\). (a) Before mixing, how many grams of Cu are present in the solution of \(\mathrm{CuSO}_{4} ?(\mathrm{~b})\) Predict the identity of the precipitate in the reaction. (c) Write complete and net ionic equations for the reaction that occurs when the two solutions are mixed. (d) From the calorimetric data, calculate \(\Delta H\) for the reaction that occurs on mixing. Assume that the calorimeter absorbs only a negligible quantity of heat, that the total volume of the solution is \(100.0 \mathrm{~mL}\), and that the specific heat and density of the solution after mixing are the same as that of pure water.
Consider the decomposition of liquid benzene, \(\mathrm{C}_{6} \mathrm{H}_{6}(l)\), to gaseous acetylene, \(\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})\) : $$ \mathrm{C}_{6} \mathrm{H}_{6}(l) \longrightarrow 3 \mathrm{C}_{2} \mathrm{H}_{2}(g) \quad \Delta H=+630 \mathrm{~kJ} $$ (a) What is the enthalpy change for the reverse reaction? (b) What is \(\Delta H\) for the formation of \(1 \mathrm{~mol}\) of acetylene? (c) Which is more likely to be thermodynamically favored, the forward reaction or the reverse reaction? (d) If \(C_{6} \mathrm{H}_{6}(g)\) were consumed instead of \(\mathrm{C}_{6} \mathrm{H}_{6}(l)\), would you expect the magnitude of \(\Delta H\) to increase, decrease, or stay the same? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.