Chapter 5: Problem 29
(a) What is meant by the term state function? (b) Give an example of a quantity that is a state function and one that is not. (c) Is work a state function? Why or why not?
Chapter 5: Problem 29
(a) What is meant by the term state function? (b) Give an example of a quantity that is a state function and one that is not. (c) Is work a state function? Why or why not?
All the tools & learning materials you need for study success - in one app.
Get started for freeUnder constant-volume conditions the heat of combustion of glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) is \(15.57 \mathrm{~kJ} / \mathrm{g}\). A \(2.500-\mathrm{g}\) sample of glucose is burned in a bomb calorimeter. The temperature of the calorimeter increased from \(20.55^{\circ} \mathrm{C}\) to \(23.25^{\circ} \mathrm{C}\). (a) What is the total heat capacity of the calorimeter? (b) If the size of the glucose sample had been exactly twice as large, what would the temperature change of the calorimeter have been?
(a) What is meant by the term standard conditions, with reference to enthalpy changes? (b) What is meant by the term enthalpy of formation? (c) What is meant by the term standard enthalpy of formation?
Consider the following reaction: $$ 2 \mathrm{Mg}(s)+\mathrm{O}_{2}(g)-\longrightarrow 2 \mathrm{MgO}(s) \quad \Delta H=-1204 \mathrm{~kJ} $$ (a) Is this reaction exothermic or endothermic? (b) Calculate the amount of heat transferred when \(2.4 \mathrm{~g}\) of \(\mathrm{Mg}(s)\) reacts at constant pressure. (c) How many grams of \(\mathrm{MgO}\) are produced during an enthalpy change of \(-96.0 \mathrm{~kJ} ?\) (d) How many kilojoules of heat are absorbed when \(7.50 \mathrm{~g}\) of \(\mathrm{MgO}(s)\) is decomposed into \(\mathrm{Mg}(s)\) and \(\mathrm{O}_{2}(g)\) at constant pressure?
The enthalpy change for melting ice at \(0^{\circ} \mathrm{C}\) and constant atmospheric pressure is \(6.01 \mathrm{~kJ} / \mathrm{mol}\). Calculate the quantity of energy required to melt a moderately large iceberg with a mass of \(1.25\) million metric tons. (A metric ton is \(1000 \mathrm{~kg}\).)
(a) Why are fats well suited for energy storage in the human body? (b) A particular chip snack food is composed of \(12 \%\) protein, \(14 \%\) fat, and the rest carbohydrate. What percentage of the calorie content of this food is fat? (c) How many grams of protein provide the same fuel value as \(25 \mathrm{~g}\) of fat?
What do you think about this solution?
We value your feedback to improve our textbook solutions.