Chapter 5: Problem 23
(a) State the first law of thermodynamics. (b) What is meant by the internal energy of a system? (c) By what means can the internal energy of a closed system increase?
Chapter 5: Problem 23
(a) State the first law of thermodynamics. (b) What is meant by the internal energy of a system? (c) By what means can the internal energy of a closed system increase?
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat is the connection between Hess's law and the fact that \(H\) is a state function?
From the following data for three prospective fuels, calculate which could provide the most energy per unit volume:$$ \begin{array}{lcc} & \begin{array}{c} \text { Density } \\ \text { at } 20^{\circ} \mathrm{C} \\ \left(\mathrm{g} / \mathrm{cm}^{3}\right) \end{array} & \begin{array}{c} \text { Molar Enthalpy } \\ \text { of Combustion } \\ \text { Fuel } \end{array} & \mathrm{kJ} / \mathrm{mol} \\ \hline \text { Nitroethane, } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}(l) & 1.052 & -1368 \\ \text { Ethanol, } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) & 0.789 & -1367 \\ \text { Methylhydrazine, } \mathrm{CH}_{6} \mathrm{~N}_{2}(l) & 0.874 & -1305 \end{array} $$
Many cigarette lighters contain liquid butane, \(\mathrm{C}_{4} \mathrm{H}_{10}(l)\). Using standard enthalpies of formation, calculate the quantity of heat produced when \(5.00 \mathrm{~g}\) of butane is completely combusted in air under standard conditions.
(a) What is the specific heat of liquid water? (b) What is the molar heat capacity of liquid water? (c) What is the heat capacity of \(185 \mathrm{~g}\) of liquid water? (d) How many \(\mathrm{k}\) ] of heat are needed to raise the temperature of \(10.00 \mathrm{~kg}\) of liquid water from \(24.6^{\circ} \mathrm{C}\) to \(46.2^{\circ} \mathrm{C} ?\)
At \(20^{\circ} \mathrm{C}\) (approximately room temperature) the average velocity of \(\mathrm{N}_{2}\) molecules in air is \(1050 \mathrm{mph}\). (a) What is the average speed in \(\mathrm{m} / \mathrm{s}\) ? (b) What is the kinetic energy (in J) of an \(\mathrm{N}_{2}\) molecule moving at this speed? (c) What is the total kinetic energy of \(1 \mathrm{~mol}\) of \(\mathrm{N}_{2}\) molecules moving at this speed?
What do you think about this solution?
We value your feedback to improve our textbook solutions.