Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is meant by the term system in thermodynamics? (b) What is a closed system?

Short Answer

Expert verified
(a) In thermodynamics, a system refers to a specific region of space chosen for study, defined by a boundary. The behavior of matter and energy inside this boundary are analyzed to understand various thermodynamic processes. (b) A closed system is a type of system where the mass within the system remains constant, meaning no mass enters or exits the defined boundary. However, energy, such as heat and work, can still be exchanged between the system and its surroundings.

Step by step solution

01

(Define System in Thermodynamics)

In thermodynamics, a system refers to a specific region of space that is chosen for study, usually defined by a boundary. The behavior of matter and energy inside this boundary are analyzed to understand various thermodynamic processes, such as heat transfer, energy conversion, and phase changes.
02

(Define Closed System)

A closed system is a type of system in thermodynamics where the mass within the system remains constant, meaning no mass enters or exits the defined boundary. However, energy, such as heat and work, can still be exchanged between the system and its surroundings. Closed systems are commonly used to study processes where energy transfer and transformation occur without the addition or loss of any substances.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the enthalpy change for the reaction $$ \mathrm{P}_{4} \mathrm{O}_{6}(s)+2 \mathrm{O}_{2}(g) \cdots \mathrm{P}_{4} \mathrm{O}_{10}(s) $$ given the following enthalpies of reaction: $$ \begin{array}{ll} \mathrm{P}_{4}(\mathrm{~s})+3 \mathrm{O}_{2}(g) \rightarrow \mathrm{P}_{4} \mathrm{O}_{6}(s) & \Delta H=-1640.1 \mathrm{~kJ} \\ \mathrm{P}_{4}(s)+5 \mathrm{O}_{2}(g)-\cdots & \mathrm{P}_{4} \mathrm{O}_{1} 0(s) & \Delta H=-2940.1 \mathrm{~kJ} \end{array} $$

Ammonia \(\left(\mathrm{NH}_{3}\right)\) boils at \(-33^{\circ} \mathrm{C} ;\) at this temperature it has a density of \(0.81 \mathrm{~g} / \mathrm{cm}^{3}\). The enthalpy of formation of \(\mathrm{NH}_{3}(g)\) is \(-46.2 \mathrm{~kJ} / \mathrm{mol}\), and the enthalpy of vaporization of \(\mathrm{NH}_{3}(l)\) is \(23.2 \mathrm{~kJ} / \mathrm{mol}\). Calculate the enthalpy change when \(1 \mathrm{~L}\) of liquid \(\mathrm{NH}_{3}\) is burned in air to give \(\mathrm{N}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(g)\). How does this compare with \(\Delta H\) for the complete combustion of \(1 \mathrm{~L}\) of liquid methanol \(\mathrm{CH}_{3} \mathrm{OH}(l) ?\) For \(\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})\), the density at \(25^{\circ} \mathrm{C}\) is \(0.792 \mathrm{~g} / \mathrm{cm}^{3}\), and \(\Delta H_{f}^{\circ}\) equals \(-239 \mathrm{~kJ} / \mathrm{mol}\).

Under constant-volume conditions the heat of combustion of glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) is \(15.57 \mathrm{~kJ} / \mathrm{g}\). A \(2.500-\mathrm{g}\) sample of glucose is burned in a bomb calorimeter. The temperature of the calorimeter increased from \(20.55^{\circ} \mathrm{C}\) to \(23.25^{\circ} \mathrm{C}\). (a) What is the total heat capacity of the calorimeter? (b) If the size of the glucose sample had been exactly twice as large, what would the temperature change of the calorimeter have been?

What is the connection between Hess's law and the fact that \(H\) is a state function?

For each of the following compounds, write a balanced thermochemical equation depicting the formation of one mole of the compound from its elements in their standard states and use Appendix \(C\) to obtain the value of \(\Delta H_{f}^{\circ}:\) (a) \(\mathrm{NH}_{3}(g)\), (b) \(\mathrm{SO}_{2}(g)\) (c) \(\mathrm{RbClO}_{3}(s)\) (d) \(\mathrm{NH}_{4} \mathrm{NO}_{3}(s)\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free