Chapter 5: Problem 17
(a) What is meant by the term system in thermodynamics? (b) What is a closed system?
Chapter 5: Problem 17
(a) What is meant by the term system in thermodynamics? (b) What is a closed system?
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the enthalpy change for the reaction $$ \mathrm{P}_{4} \mathrm{O}_{6}(s)+2 \mathrm{O}_{2}(g) \cdots \mathrm{P}_{4} \mathrm{O}_{10}(s) $$ given the following enthalpies of reaction: $$ \begin{array}{ll} \mathrm{P}_{4}(\mathrm{~s})+3 \mathrm{O}_{2}(g) \rightarrow \mathrm{P}_{4} \mathrm{O}_{6}(s) & \Delta H=-1640.1 \mathrm{~kJ} \\ \mathrm{P}_{4}(s)+5 \mathrm{O}_{2}(g)-\cdots & \mathrm{P}_{4} \mathrm{O}_{1} 0(s) & \Delta H=-2940.1 \mathrm{~kJ} \end{array} $$
Ammonia \(\left(\mathrm{NH}_{3}\right)\) boils at \(-33^{\circ} \mathrm{C} ;\) at this temperature it has a density of \(0.81 \mathrm{~g} / \mathrm{cm}^{3}\). The enthalpy of formation of \(\mathrm{NH}_{3}(g)\) is \(-46.2 \mathrm{~kJ} / \mathrm{mol}\), and the enthalpy of vaporization of \(\mathrm{NH}_{3}(l)\) is \(23.2 \mathrm{~kJ} / \mathrm{mol}\). Calculate the enthalpy change when \(1 \mathrm{~L}\) of liquid \(\mathrm{NH}_{3}\) is burned in air to give \(\mathrm{N}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(g)\). How does this compare with \(\Delta H\) for the complete combustion of \(1 \mathrm{~L}\) of liquid methanol \(\mathrm{CH}_{3} \mathrm{OH}(l) ?\) For \(\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})\), the density at \(25^{\circ} \mathrm{C}\) is \(0.792 \mathrm{~g} / \mathrm{cm}^{3}\), and \(\Delta H_{f}^{\circ}\) equals \(-239 \mathrm{~kJ} / \mathrm{mol}\).
Under constant-volume conditions the heat of combustion of glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) is \(15.57 \mathrm{~kJ} / \mathrm{g}\). A \(2.500-\mathrm{g}\) sample of glucose is burned in a bomb calorimeter. The temperature of the calorimeter increased from \(20.55^{\circ} \mathrm{C}\) to \(23.25^{\circ} \mathrm{C}\). (a) What is the total heat capacity of the calorimeter? (b) If the size of the glucose sample had been exactly twice as large, what would the temperature change of the calorimeter have been?
What is the connection between Hess's law and the fact that \(H\) is a state function?
For each of the following compounds, write a balanced thermochemical equation depicting the formation of one mole of the compound from its elements in their standard states and use Appendix \(C\) to obtain the value of \(\Delta H_{f}^{\circ}:\) (a) \(\mathrm{NH}_{3}(g)\), (b) \(\mathrm{SO}_{2}(g)\) (c) \(\mathrm{RbClO}_{3}(s)\) (d) \(\mathrm{NH}_{4} \mathrm{NO}_{3}(s)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.