Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The average adult human male has a total blood volume of \(5.0 \mathrm{~L}\). If the concentration of sodium ion in this average individual is \(0.135 \mathrm{M}\), what is the mass of sodium ion circulating in the blood?

Short Answer

Expert verified
The mass of sodium ions circulating in the blood of an average adult human male is approximately 15.51 grams.

Step by step solution

01

Calculate the moles of sodium ions

First, we need to determine the number of moles of sodium ions in the blood. To do this, we can use the equation: moles of solute = concentration × volume where concentration is given in molarity (M) and volume is given in liters (L). moles of sodium ions = \(0.135\text{ M} \times 5.0\text{ L}\)
02

Calculate the number of moles of sodium ions

Now, we just need to do the math: moles of sodium ions = \(0.135 \times 5.0\) moles of sodium ions = 0.675 moles
03

Convert moles of sodium ions to mass

To convert moles of sodium ions to mass, we'll use the molar mass of sodium (Na), which is 22.99 g/mol. The conversion equation is: mass of sodium ions = moles of sodium ions × molar mass of sodium mass of sodium ions = \(0.675\text{ moles} \times 22.99\frac{\text{g}}{\text{mol}}\)
04

Calculate the mass of sodium ions

Finally, perform the calculation: mass of sodium ions = \(0.675 \times 22.99\) mass of sodium ions = 15.51 g So the mass of sodium ions circulating in the blood of an average adult human male is approximately 15.51 grams.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You choose to investigate some of the solubility guidelines for two ions not listed in Table 4.1, the chromate ion \(\left(\mathrm{CrO}_{4}{ }^{2-}\right)\) and the oxalate ion \(\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)\). You are given \(0.01 \mathrm{M}\) solutions (A, B, C, D) of four water-soluble salts: $$ \begin{array}{lll} \hline \text { Solution } & \text { Solute } & \text { Color of Solution } \\ \hline \mathrm{A} & \mathrm{Na}_{2} \mathrm{CrO}_{4} & \text { Yellow } \\ \mathrm{B} & \left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} & \text { Colorless } \\ \mathrm{C} & \mathrm{AgNO}_{3} & \text { Colorless } \\ \mathrm{D} & \mathrm{CaCl}_{2} & \text { Colorless } \\ \hline \end{array} $$ When these solutions are mixed, the following observations are made: $$ \begin{array}{lll} \hline \text { Expt } & \text { Solutions } & \\ \text { Number } & \text { Mixed } & \text { Result } \\ \hline 1 & \mathrm{~A}+\mathrm{B} & \text { No precipitate, yellow solution } \\\ 2 & \mathrm{~A}+\mathrm{C} & \text { Red precipitate forms } \\ 3 & \mathrm{~A}+\mathrm{D} & \text { No precipitate, yellow solution } \\ 4 & \mathrm{~B}+\mathrm{C} & \text { White precipitate forms } \\ 5 & \mathrm{~B}+\mathrm{D} & \text { White precipitate forms } \\ 6 & \mathrm{C}+\mathrm{D} & \text { White precipitate forms } \\ \hline \end{array} $$ (a) Write a net ionic equation for the reaction that occurs in each of the experiments. (b) Identify the precipitate formed, if any, in each of the experiments. (c) Based on these limited observations, which ion tends to form the more soluble salts, chromate or oxalate?

In a laboratory, \(6.82 \mathrm{~g}\) of \(\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}\) is dissolved in enough water to form \(0.500 \mathrm{~L}\) of solution. A \(0.100\) -L sample is withdrawn from this stock solution and titrated with a \(0.0245 \mathrm{M}\) solution of \(\mathrm{Na}_{2} \mathrm{CrO}_{4}\). What volume of \(\mathrm{Na}_{2} \mathrm{CrO}_{4}\) solution is needed to precipitate all the \(\mathrm{Sr}^{2+}(a q)\) as \(\mathrm{SrCrO}_{4} ?\)

A 1.248-g sample of limestone rock is pulverized and then treated with \(30.00 \mathrm{~mL}\) of \(1.035 \mathrm{M} \mathrm{HCl}\) solution. The excess acid then requires \(11.56 \mathrm{~mL}\) of \(1.010 \mathrm{M} \mathrm{NaOH}\) for neutralization. Calculate the percent by mass of calcium carbonate in the rock, assuming that it is the only substance reacting with the \(\mathrm{HCl}\) solution.

Specify what ions are present in solution upon dissolving each of the following substances in water: (a) \(\mathrm{ZnCl}_{2}\), (b) \(\mathrm{HNO}_{3}\) (c) \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\), (d) \(\mathrm{Ca}(\mathrm{OH})_{2}\).

(a) Starting with solid sucrose, \(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\), describe how you would prepare \(250 \mathrm{~mL}\) of a \(0.250 \mathrm{M}\) sucrose solution. (b) Describe how you would prepare \(350.0 \mathrm{~mL}\) of \(0.100 \mathrm{M} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\) starting with \(3.00 \mathrm{~L}\) of \(1.50 \mathrm{M}\) \(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free