Chapter 4: Problem 45
Define oxidation and reduction in terms of (a) electron transfer and (b) oxidation numbers.
Chapter 4: Problem 45
Define oxidation and reduction in terms of (a) electron transfer and (b) oxidation numbers.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe average adult human male has a total blood volume of \(5.0 \mathrm{~L}\). If the concentration of sodium ion in this average individual is \(0.135 \mathrm{M}\), what is the mass of sodium ion circulating in the blood?
Lanthanum metal forms cations with a charge of \(3+\). Consider the following observations about the chemistry of lanthanum: When lanthanum metal is exposed to air, a white solid (compound \(\mathrm{A}\) ) is formed that contains lanthanum and one other element. When lanthanum metal is added to water, gas bubbles are observed and a different white solid (compound B) is formed. Both \(\mathrm{A}\) and \(\mathrm{B}\) dissolve in hydrochloric acid to give a clear solution. When either of these solutions is evaporated, a soluble white solid (compound \(\mathrm{C}\) ) remains. If compound \(\mathrm{C}\) is dissolved in water and sulfuric acid is added, a white precipitate (compound D) forms. (a) Propose identities for the substances \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and \(\mathrm{D}\). (b) Write net ionic equations for all the reactions described. (c) Based on the preceding observations, what can be said about the position of lanthanum in the activity series (Table 4.5)?
A sample of solid \(\mathrm{Ca}(\mathrm{OH})_{2}\) is stirred in water at \(30^{\circ} \mathrm{C}\) until the solution contains as much dissolved \(\mathrm{Ca}(\mathrm{OH})_{2}\) as it can hold. A \(100-\mathrm{mL}\) sample of this solution is withdrawn and titrated with \(5.00 \times 10^{-2} \mathrm{M} \mathrm{HBr}\). It requires \(48.8 \mathrm{~mL}\) of the acid solution for neutralization. What is the molarity of the \(\mathrm{Ca}(\mathrm{OH})_{2}\) solution? What is the solubility of \(\mathrm{Ca}(\mathrm{OH})_{2}\) in water, at \(30^{\circ} \mathrm{C}\), in grams of \(\mathrm{Ca}(\mathrm{OH})_{2}\) per \(100 \mathrm{~mL}\) of solution?
(a) Is the concentration of a solution an intensive or an extensive property? (b) What is the difference between \(0.50 \mathrm{~mol} \mathrm{HCl}\) and \(0.50 \mathrm{M} \mathrm{HCl} ?\)
Write a balanced molecular equation and a net ionic equation for the reaction that occurs when (a) solid \(\mathrm{CaCO}_{3}\) reacts with an aqueous solution of nitric acid; (b) solid iron(II) sulfide reacts with an aqueous solution of hydrobromic acid.
What do you think about this solution?
We value your feedback to improve our textbook solutions.