Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 68

(a) How many grams of solute are present in \(50.0 \mathrm{~mL}\) of \(0.488 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} ?\) (b) If \(4.00 \mathrm{~g}\) of \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\) is dissolved in enough water to form \(400 \mathrm{~mL}\) of solution, what is the molarity of the solution? (c) How many milliliters of \(0.0250 \mathrm{M} \mathrm{CuSO}_{4}\) contain \(1.75 \mathrm{~g}\) of solute?

Problem 69

(a) Which will have the highest concentration of potassium ion: \(0.20 \mathrm{M} \mathrm{KCl}, 0.15 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}\), or \(0.080 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}\) ? (b) Which will contain the greater number of moles of potassium ion: \(30.0 \mathrm{~mL}\) of \(0.15 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}\) or \(25.0 \mathrm{~mL}\) of \(0.080 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4} ?\)

Problem 70

In each of the following pairs, indicate which has the higher concentration of \(\mathrm{Cl}^{-}\) ion: (a) \(0.10 \mathrm{M} \mathrm{CaCl}_{2}\) or \(0.15 \mathrm{M} \mathrm{KCl}\) solution, (b) \(100 \mathrm{~mL}\) of \(0.10 \mathrm{M} \mathrm{KCl}\) solution or \(400 \mathrm{~mL}\) of \(0.080 \mathrm{M} \mathrm{LiCl}\) solution, (c) \(0.050 \mathrm{M} \mathrm{HCl}\) solution or \(0.020 \mathrm{M} \mathrm{CdCl}_{2}\) solution.

Problem 71

Indicate the concentration of each ion or molecule present in the following solutions: (a) \(0.25 \mathrm{M} \mathrm{NaNO}_{3}\), (b) \(1.3 \times 10^{-2} \mathrm{M} \mathrm{MgSO}_{4},(\mathrm{c}) 0.0150 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\), (d) a mixture of \(45.0 \mathrm{~mL}\) of \(0.272 \mathrm{M} \mathrm{NaCl}\) and \(65.0 \mathrm{~mL}\) of \(0.0247 \mathrm{M}\) \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}\). Assume that the volumes are additive.

Problem 72

Indicate the concentration of each ion present in the solution formed by mixing (a) \(42.0 \mathrm{~mL}\) of \(0.170 \mathrm{M} \mathrm{NaOH}\) and \(37.6 \mathrm{~mL}\) of \(0.400 \mathrm{M} \mathrm{NaOH}\), (b) \(44.0 \mathrm{~mL}\) of \(0.100 \mathrm{M}\) and \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) and \(25.0 \mathrm{~mL}\) of \(0.150 \mathrm{M} \mathrm{KCl}\), (c) \(3.60 \mathrm{~g} \mathrm{KCl}\) in \(75.0 \mathrm{~mL}\) of \(0.250 \mathrm{M} \mathrm{CaCl}_{2}\) solution. Assume that the volumes are additive.

Problem 73

(a) You have a stock solution of \(14.8 \mathrm{M} \mathrm{NH}_{3}\). How many milliliters of this solution should you dilute to make \(1000.0 \mathrm{~mL}\) of \(0.250 \mathrm{M} \mathrm{NH}_{3} ?\) (b) If you take a \(10.0-\mathrm{mL}\) portion of the stock solution and dilute it to a total volume of \(0.500 \mathrm{~L}\), what will be the concentration of the final solution?

Problem 74

(a) How many milliliters of a stock solution of \(10.0 \mathrm{M}\) \(\mathrm{HNO}_{3}\) would you have to use to prepare \(0.450 \mathrm{~L}\) of \(0.500 \mathrm{M} \mathrm{HNO}_{3} ?(\mathrm{~b})\) If you dilute \(25.0 \mathrm{~mL}\) of the stock so- lution to a final volume of \(0.500 \mathrm{~L}\), what will be the concentration of the diluted solution?

Problem 75

(a) Starting with solid sucrose, \(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\), describe how you would prepare \(250 \mathrm{~mL}\) of a \(0.250 \mathrm{M}\) sucrose solution. (b) Describe how you would prepare \(350.0 \mathrm{~mL}\) of \(0.100 \mathrm{M} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\) starting with \(3.00 \mathrm{~L}\) of \(1.50 \mathrm{M}\) \(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\)

Problem 76

(a) How would you prepare \(175.0 \mathrm{~mL}\) of \(0.150 \mathrm{MAgNO}_{3}\) solution starting with pure solute? (b) An experiment calls for you to use \(100 \mathrm{~mL}\) of \(0.50 \mathrm{M} \mathrm{HNO}_{3}\) solution. All you have available is a bottle of \(3.6 \mathrm{M} \mathrm{HNO}_{3}\). How would you prepare the desired solution?

Problem 77

Pure acetic acid, known as glacial acetic acid, is a liquid with a density of \(1.049 \mathrm{~g} / \mathrm{mL}\) at \(25^{\circ} \mathrm{C}\). Calculate the molarity of a solution of acetic acid made by dissolving \(20.00 \mathrm{~mL}\) of glacial acetic acid at \(25^{\circ} \mathrm{C}\) in enough water to make \(250.0 \mathrm{~mL}\) of solution.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks