Chapter 3: Problem 68
(a) Define the terms theoretical yield, actual yield, and percent yield. (b) Why is the actual yield in a reaction almost always less than the theoretical yield? (c) Can a reaction ever have \(110 \%\) actual yield?
Chapter 3: Problem 68
(a) Define the terms theoretical yield, actual yield, and percent yield. (b) Why is the actual yield in a reaction almost always less than the theoretical yield? (c) Can a reaction ever have \(110 \%\) actual yield?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe fermentation of glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) produces ethyl alcohol \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\) and \(\mathrm{CO}_{2}\) $$ \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q) \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)+2 \mathrm{CO}_{2}(g) $$ (a) How many moles of \(\mathrm{CO}_{2}\) are produced when \(0.400\) mol of \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) reactsin this fashion? (b) How many grams of \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) are needed to form \(7.50 \mathrm{~g}\) of \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} ?\) (c) How many grams of \(\mathrm{CO}_{2}\) form when \(7.50 \mathrm{~g}\) of \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\) are produced?
An element \(X\) forms an iodide \(\left(\mathrm{XI}_{3}\right)\) and a chloride \(\left(\mathrm{XCl}_{3}\right) .\) The iodide is quantitatively converted to the chloride when it is heated in a stream of chlorine: $$ 2 \mathrm{XI}_{3}+3 \mathrm{Cl}_{2} \longrightarrow 2 \mathrm{XCl}_{3}+3 \mathrm{I}_{2} $$ If \(0.5000 \mathrm{~g}\) of \(\mathrm{XI}_{3}\) is treated, \(0.2360 \mathrm{~g}\) of \(\mathrm{XCl}_{3}\) is obtained. (a) Calculate the atomic weight of the element \(\mathrm{X}\) (b) Identify the element \(\bar{X}\).
A chemical plant uses electrical energy to decompose aqueous solutions of \(\mathrm{NaCl}\) to give \(\mathrm{Cl}_{2}, \mathrm{H}_{2}\), and \(\mathrm{NaOH}\) : \(2 \mathrm{NaCl}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \underset{2 \mathrm{NaOH}(a q)}{\longrightarrow}+\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g)\) If the plant produces \(1.5 \times 10^{6} \mathrm{~kg}\left(1500\right.\) metric tons) of \(\mathrm{Cl}_{2}\) daily, estimate the quantities of \(\mathrm{H}_{2}\) and \(\mathrm{NaOH}\) produced.
Aluminum hydroxide reacts with sulfuric acid as follows: \(2 \mathrm{Al}(\mathrm{OH})_{3}(s)+3 \mathrm{H}_{2} \mathrm{SO}_{4}(a q)\) \(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+6 \mathrm{H}_{2} \mathrm{O}(l)\) Which reagent is the limiting reactant when \(0.500 \mathrm{~mol}\) \(\mathrm{Al}(\mathrm{OH})_{3}\) and \(0.500 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}\) are allowed to react? How many moles of \(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\) can form under these conditions? How many moles of the excess reactant remain after the completion of the reaction?
Balance the following equations, and indicate whether they are combination, decomposition, or combustion reactions: (a) \(\mathrm{Al}(\mathrm{s})+\mathrm{Cl}_{2}(g) \longrightarrow \mathrm{AlCl}_{3}(\mathrm{~s})\) (b) \(\mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)\) (c) \(\mathrm{Li}(s)+\mathrm{N}_{2}(g) \longrightarrow \mathrm{Li}_{3} \mathrm{~N}(s)\) (d) \(\mathrm{PbCO}_{3}(s) \longrightarrow \mathrm{PbO}(s)+\mathrm{CO}_{2}(g)\) (e) \(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}(l)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.