Chapter 3: Problem 62
Calcium hydride reacts with water to form calcium hydroxide and hydrogen gas. (a) Write a balanced chemical equation for the reaction. (b) How many grams of calcium hydride are needed to form \(8.500 \mathrm{~g}\) of hydrogen?
Chapter 3: Problem 62
Calcium hydride reacts with water to form calcium hydroxide and hydrogen gas. (a) Write a balanced chemical equation for the reaction. (b) How many grams of calcium hydride are needed to form \(8.500 \mathrm{~g}\) of hydrogen?
All the tools & learning materials you need for study success - in one app.
Get started for freeAn organic compound was found to contain only \(\mathrm{C}, \mathrm{H}\), and Cl. When a \(1.50-g\) sample of the compound was completely combusted in air, \(3.52 \mathrm{~g}\) of \(\mathrm{CO}_{2}\) was formed. In a separate experiment the chlorine in a \(1.00-\mathrm{g}\) sample of the compound was converted to \(1.27 \mathrm{~g}\) of \(\mathrm{AgCl}\). Determine the empirical formula of the compound.
Write balanced chemical equations to correspond to each of the following descriptions: (a) Solid calcium carbide, \(\mathrm{CaC}_{2}\), reacts with water to form an aqueous solution of calcium hydroxide and acetylene gas, \(\mathrm{C}_{2} \mathrm{H}_{2}\). (b) When solid potassium chlorate is heated, it decom-
One of the steps in the commercial process for converting ammonia to nitric acid is the conversion of \(\mathrm{NH}_{3}\) to \(\mathrm{NO}\) : $$ 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) $$ In a certain experiment, \(1.50 \mathrm{~g}\) of \(\mathrm{NH}_{3}\) reacts with \(2.75 \mathrm{~g}\) of \(\mathrm{O}_{2}\) (a) Which is the limiting reactant? (b) How many grams of \(\mathrm{NO}\) and of \(\mathrm{H}_{2} \mathrm{O}\) form? (c) How many grams of the excess reactant remain after the limiting reactant is completely consumed? (d) Show that your calculations in parts (b) and (c) are consistent with the law of conservation of mass.
Aluminum sulfide reacts with water to form aluminum hydroxide and hydrogen sulfide. (a) Write the balanced chemical equation for this reaction. (b) How many grams of aluminum hydroxide are obtained from \(14.2 \mathrm{~g}\) of aluminum sulfide?
Write balanced chemical equations to correspond to each of the following descriptions: (a) When sulfur trioxide gas reacts with water, a solution of sulfuric acid forms. (b) Boron sulfide, \(\mathrm{B}_{2} \mathrm{~S}_{3}(s)\), reacts violently with water to form dissolved boric acid, \(\mathrm{H}_{3} \mathrm{BO}_{3}\), and hydrogen sulfide gas. (c) When an aqueous solution of lead(II) nitrate is mixed with an aqueous solution of sodium iodide, an aqueous solution of sodium nitrate and a yellow solid, lead iodide, are formed. (d) When solid mercury(II) nitrate is heated, it decomposes to form solid mercury(II) oxide, gaseous nitrogen dioxide, and oxygen. (e) Copper metal reacts with hot concentrated sulfuric acid solution to form aqueous copper(II) sulfate, sulfur dioxide gas, and water.
What do you think about this solution?
We value your feedback to improve our textbook solutions.