Chapter 3: Problem 55
Why is it essential to use balanced chemical equations when determining the quantity of a product formed from a given quantity of a reactant?
Chapter 3: Problem 55
Why is it essential to use balanced chemical equations when determining the quantity of a product formed from a given quantity of a reactant?
All the tools & learning materials you need for study success - in one app.
Get started for freeAn iron ore sample contains \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) together with other substances. Reaction of the ore with CO produces iron metal: $$ \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(g) \longrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(g) $$ (a) Balance this equation. (b) Calculate the number of grams of CO that can react with \(0.150 \mathrm{~kg}\) of \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) (c) Calculate the number of grams of Fe and the number of grams of \(\mathrm{CO}_{2}\) formed when \(0.150 \mathrm{~kg}\) of \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) reacts. (d) Show that your calculations in parts (b) and (c) are consistent with the law of conservation of mass.
When hydrocarbons are burned in a limited amount of air, both \(\mathrm{CO}\) and \(\mathrm{CO}_{2}\) form. When \(0.450 \mathrm{~g}\) of a particular hydrocarbon was burned in air, \(0.467 \mathrm{~g}\) of \(\mathrm{CO}, 0.733 \mathrm{~g}\) of \(\mathrm{CO}_{2}\), and \(0.450 \mathrm{~g}\) of \(\mathrm{H}_{2} \mathrm{O}\) were formed. (a) What is the empirical formula of the compound? (b) How many grams of \(\mathrm{O}_{2}\) were used in the reaction? (c) How many grams would have been required for complete combustion?
Determine the empirical and molecular formulas of each of the following substances: (a) Styrene, a compound substance used to make Styrofoam \(^{8}\) cups and insulation, contains \(92.3 \% \mathrm{C}\) and \(7.7 \%\) H by mass and has a molar mass of \(104 \mathrm{~g} / \mathrm{mol}\). (b) Caffeine, a stimulant found in coffee, contains \(49.5 \%\) \(\mathrm{C}, 5.15 \% \mathrm{H}, 28.9 \% \mathrm{~N}\), and \(16.5 \% \mathrm{O}\) by mass and has a molar mass of \(195 \mathrm{~g} / \mathrm{mol}\). (c) Monosodium glutamate (MSG), a flavor enhancer in certain foods, contains \(35.51 \%\) C, \(4.77 \%\) H, \(37.85 \%\) O, \(8.29 \% \mathrm{~N}\), and \(13.60 \% \mathrm{Na}\), and has a molar mass of \(169 \mathrm{~g} / \mathrm{mol}\).
A piece of aluminum foil \(1.00 \mathrm{~cm}\) square and \(0.550 \mathrm{~mm}\) thick is allowed to react with bromine to form aluminum bromide as shown in the accompanying photo. (a) How many moles of aluminum were used? (The density of aluminum is \(2699 \mathrm{~g} / \mathrm{cm}^{3}\) ) (b) How many grams of aluminum bromide form, assuming the aluminum reacts completely?
Balance the following equations, and indicate whether they are combination, decomposition, or combustion reactions: (a) \(\mathrm{Al}(\mathrm{s})+\mathrm{Cl}_{2}(g) \longrightarrow \mathrm{AlCl}_{3}(\mathrm{~s})\) (b) \(\mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)\) (c) \(\mathrm{Li}(s)+\mathrm{N}_{2}(g) \longrightarrow \mathrm{Li}_{3} \mathrm{~N}(s)\) (d) \(\mathrm{PbCO}_{3}(s) \longrightarrow \mathrm{PbO}(s)+\mathrm{CO}_{2}(g)\) (e) \(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}(l)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.