Chapter 22: Problem 30
Would hydrogen be a satisfactory basis for a fuel econo\(\mathrm{my}\) if the only available sources were cracking of natural gas and conversion of grain- based ethanol? Explain.
Chapter 22: Problem 30
Would hydrogen be a satisfactory basis for a fuel econo\(\mathrm{my}\) if the only available sources were cracking of natural gas and conversion of grain- based ethanol? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeIdentify each of the following elements as a metal, nonmetal, or metalloid: (a) gallium, (b) molybdenum, (c) tellurium, (d) arsenic, (e) xenon, (f) cadmium.
Give the chemical formula for (a) hydrocyanic acid, (b) nickel tetracarbonyl, (c) barium bicarbonate, (d) calcium acetylide.
The standard heats of formation of \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})\), \(\mathrm{H}_{2} \mathrm{Se}(\mathrm{g})\), and \(\mathrm{H}_{2} \mathrm{Te}(g)\) are \(-241.8,-20.17,+29.7\), and \(+99.6 \mathrm{~kJ} / \mathrm{mol}\), respectively. The enthalpies necessary to convert the elements in their standard states to one mole of gaseous atoms are \(248,277,227\), and \(197 \mathrm{~kJ} / \mathrm{mol}\) of atoms for \(\mathrm{O}, \mathrm{S}, \mathrm{Se}\), and Te, respectively. The enthalpy for dissociation of \(\mathrm{H}_{2}\) is \(436 \mathrm{~kJ} / \mathrm{mol}\). Calculate the average \(\mathrm{H}-\mathrm{O}, \mathrm{H}-\mathrm{S}, \mathrm{H}-\mathrm{Se}\), and \(\mathrm{H}-\mathrm{Te}\) bond enthalpies, and comment on their trend.
Explain the following observations: (a) \(\mathrm{HNO}_{3}\) is a stronger oxidizing agent than \(\mathrm{H}_{3} \mathrm{PO}_{4} .\) (b) Silicon can form an ion with six fluorine atoms, \(\mathrm{SiF}_{6}^{2-}\), whereas carbon is able to bond to a maximum of four, \(\mathrm{CF}_{4}\) (c) There are three compounds formed by carbon and hydrogen that contain two carbon atoms each \(\left(\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}\right.\), and \(\left.\mathrm{C}_{2} \mathrm{H}_{6}\right)\), whereas sili- con forms only one analogous compound \(\left(\mathrm{Si}_{2} \mathrm{H}_{6}\right)\).
Write the Lewis structure for each of the following species, and describe its geometry: (a) \(\mathrm{NH}_{4}^{+}\), (b) \(\mathrm{NO}_{2}^{-}\), (c) \(\mathrm{N}_{2} \mathrm{O}\), (d) \(\mathrm{NO}_{2}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.