Chapter 20: Problem 9
How does a zinc coating on iron protect the iron from unwanted oxidation? [Section 20.8]
Chapter 20: Problem 9
How does a zinc coating on iron protect the iron from unwanted oxidation? [Section 20.8]
All the tools & learning materials you need for study success - in one app.
Get started for freeThe following quotation is taken from an article dealing with corrosion of electronic materials: "Sulfur dioxide, its acidic oxidation products, and moisture are well established as the principal causes of outdoor corrosion of many metals." Using \(\mathrm{Ni}\) as an example, explain why the factors cited affect the rate of corrosion. Write chemical equations to illustrate your points. (Note: \(\mathrm{NiO}(s)\) is soluble in acidic solution.)
A voltaic cell is based on \(\mathrm{Ag}^{+}(a q) / \mathrm{Ag}(\mathrm{s})\) and \(\mathrm{Fe}^{3+}(a q) / \mathrm{Fe}^{2+}(a q)\) half-cells. (a) What is the standard emf of the cell? (b) Which reaction occurs at the cathode, and which at the anode of the cell? (c) Use \(S^{\circ}\) values in Appendix \(C\) and the relationship between cell potential and free-energy change to predict whether the standard cell potential increases or decreases when the temperature is raised above \(25^{\circ} \mathrm{C}\).
(a) Under what circumstances is the Nernst equation applicable? (b) What is the numerical value of the reaction quotient, \(Q\), under standard conditions? (c) What happens to the emf of a cell if the concentrations of the reactants are increased?
This oxidation-reduction reaction in acidic solution is spontaneous: \(5 \mathrm{Fe}^{2+}(a q)+\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)-\rightarrow\) \(5 \mathrm{Fe}^{3+}(a q)+\mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l)\) A solution containing \(\mathrm{KMnO}_{4}\) and \(\mathrm{H}_{2} \mathrm{SO}_{4}\) is poured into one beaker, and a solution of \(\mathrm{FeSO}_{4}\) is poured into another. A salt bridge is used to join the beakers. A platinum foil is placed in each solution, and a wire that passes through a voltmeter connects the two solutions. (a) Sketch the cell, indicating the anode and the cathode, the direction of electron movement through the external circuit, and the direction of ion migrations through the solutions. (b) Sketch the process that occurs at the atomic level at the surface of the anode. (c) Calculate the emf of the cell under standard conditions. (d) Calculate the emf of the cell at \(298 \mathrm{~K}\) when the concentrations are the following: \(\mathrm{pH}=0.0, \quad\left[\mathrm{Fe}^{2+}\right]=0.10 \mathrm{M}, \quad\left[\mathrm{MnO}_{4}^{-}\right]=1.50 \mathrm{M}\) \(\left[\mathrm{Fe}^{3+}\right]=2.5 \times 10^{-4} \mathrm{M},\left[\mathrm{Mn}^{2+}\right]=0.001 \mathrm{M}\)
(a) What happens to the emf of a battery as it is used? Why does this happen? (b) The AA-size and D-size alkaline batteries are both 1.5-V batteries that are based on the same electrode reactions. What is the major difference between the two batteries? What performance feature is most affected by this difference?
What do you think about this solution?
We value your feedback to improve our textbook solutions.