Cytochrome, a complicated molecule that we will represent as
\(\mathrm{CyFe}^{2+}\), reacts with the air we breathe to supply energy required
to synthesize adenosine triphosphate (ATP). The body uses ATP as an energy
source to drive other reactions. (Section 19.7) At \(\mathrm{pH} 7.0\) the
following reduction potentials pertain to this oxidation of
\(\mathrm{CyFe}^{2+}\) :
$$
\begin{aligned}
\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(a q)+4
\mathrm{e}^{-}--\rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) &
E_{\mathrm{red}}^{\mathrm{o}}=+0.82 \mathrm{~V} \\
\mathrm{CyFe}^{3+}(a q)+\mathrm{e}^{-}--\rightarrow \mathrm{CyFe}^{2+}(a q) &
E_{\mathrm{red}}^{\circ}=+0.22 \mathrm{~V}
\end{aligned}
$$
(a) What is \(\Delta G\) for the oxidation of \(\mathrm{CyFe}^{2+}\) by air? (b)
If the synthesis of \(1.00\) mol of ATP from adenosine diphosphate (ADP)
requires a \(\Delta G\) of \(37.7 \mathrm{~kJ}\), how many moles of ATP are
synthesized per mole of \(\mathrm{O}_{2}\) ?