Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Indicate whether each of the following statements is true or false: (a) If something is oxidized, it is formally losing electrons. (b) For the reaction \(\mathrm{Fe}^{3+}(a q)+\mathrm{Co}^{2+}(a q)-\cdots\) \(\mathrm{Fe}^{2+}(a q)+\mathrm{Co}^{3+}(a q), \mathrm{Fe}^{3+}(a q)\) is the reducing agent and \(\mathrm{Co}^{2+}(a q)\) is the oxidizing agent. (c) If there are no changes in the oxidation state of the reactants or products of a particular reaction, that reaction is not a redox reaction.

Short Answer

Expert verified
(a) True (b) False (c) True

Step by step solution

01

Statement (a): Oxidation and Electron Loss

To determine if this statement is true or false, we need to recall the meaning of oxidation in a redox reaction. Oxidation is the process of losing electrons, while reduction is the process of gaining electrons. So, if something is oxidized, it is indeed formally losing electrons. Thus, statement (a) is true.
02

Statement (b): Identifying the Reducing and Oxidizing Agents

Given the redox reaction: \[\mathrm{Fe}^{3+}(a q)+\mathrm{Co}^{2+}(a q) \rightarrow \mathrm{Fe}^{2+}(a q)+\mathrm{Co}^{3+}(a q)\] We need to determine if \(\mathrm{Fe}^{3+}(a q)\) is the reducing agent and \(\mathrm{Co}^{2+}(a q)\) is the oxidizing agent. The reducing agent is the species that gets oxidized (loses electrons), while the oxidizing agent is the species that gets reduced (gains electrons). In this reaction, \(\mathrm{Fe}^{3+}\) is reduced to \(\mathrm{Fe}^{2+}\), and \(\mathrm{Co}^{2+}\) is oxidized to \(\mathrm{Co}^{3+}\). So, \(\mathrm{Fe}^{3+}(a q)\) is the oxidizing agent, and \(\mathrm{Co}^{2+}(a q)\) is the reducing agent. Therefore, statement (b) is false.
03

Statement (c): Redox Reactions and Changes in Oxidation State

This statement says that if there are no changes in the oxidation state of the reactants or products of a particular reaction, that reaction is not a redox reaction. Redox reactions are characterized by changes in oxidation states between reactants and products, as one species loses electrons while another species gains electrons. Therefore, if there are no changes in the oxidation states, it means that there is no electron transfer and the reaction is not a redox reaction. Thus, statement (c) is true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) What is a standard reduction potential? (b) What is the standard reduction potential of a standard hydrogen electrode?

Cytochrome, a complicated molecule that we will represent as \(\mathrm{CyFe}^{2+}\), reacts with the air we breathe to supply energy required to synthesize adenosine triphosphate (ATP). The body uses ATP as an energy source to drive other reactions. (Section 19.7) At \(\mathrm{pH} 7.0\) the following reduction potentials pertain to this oxidation of \(\mathrm{CyFe}^{2+}\) : $$ \begin{aligned} \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-}--\rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) & E_{\mathrm{red}}^{\mathrm{o}}=+0.82 \mathrm{~V} \\ \mathrm{CyFe}^{3+}(a q)+\mathrm{e}^{-}--\rightarrow \mathrm{CyFe}^{2+}(a q) & E_{\mathrm{red}}^{\circ}=+0.22 \mathrm{~V} \end{aligned} $$ (a) What is \(\Delta G\) for the oxidation of \(\mathrm{CyFe}^{2+}\) by air? (b) If the synthesis of \(1.00\) mol of ATP from adenosine diphosphate (ADP) requires a \(\Delta G\) of \(37.7 \mathrm{~kJ}\), how many moles of ATP are synthesized per mole of \(\mathrm{O}_{2}\) ?

Is each of the following substances likely to serve as an oxidant or a reductant: (a) \(\mathrm{Ce}^{3+}(a q)\), (b) \(\mathrm{Ca}(\mathrm{s})\), (c) \(\mathrm{ClO}_{3}^{-}(a q)\), (d) \(\mathrm{N}_{2} \mathrm{O}_{5}(g)\) ?

(a) Suppose that an alkaline battery was manufactured using cadmium metal rather than zinc. What effect would this have on the cell emf? (b) What environmental advantage is provided by the use of nickel-metalhydride batteries over the nickel-cadmium batteries?

A voltaic cell similar to that shown in Figure \(20.5\) is constructed. One electrode compartment consists of a silver strip placed in a solution of \(\mathrm{AgNO}_{3}\), and the other has an iron strip placed in a solution of \(\mathrm{FeCl}_{2}\). The overall cell reaction is $$ \mathrm{Fe}(s)+2 \mathrm{Ag}^{+}(a q) \longrightarrow \mathrm{Fe}^{2+}(a q)+2 \mathrm{Ag}(s) $$ (a) What is being oxidized, and what is being reduced? (b) Write the half-reactions that occur in the two electrode compartments. (c) Which electrode is the anode, and which is the cathode? (d) Indicate the signs of the electrodes. (e) Do electrons flow from the silver electrode to the iron electrode, or from the iron to the silver? (f) In which directions do the cations and anions migrate through the solution?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free