Chapter 20: Problem 11
(a) What is meant by the term oxidation? (b) On which side of an oxidation half-reaction do the electrons appear? (c) What is meant by the term oxidant? (d) What is meant by the term oxidizing agent?
Chapter 20: Problem 11
(a) What is meant by the term oxidation? (b) On which side of an oxidation half-reaction do the electrons appear? (c) What is meant by the term oxidant? (d) What is meant by the term oxidizing agent?
All the tools & learning materials you need for study success - in one app.
Get started for freeUsing standard reduction potentials (Appendix E), calculate the standard emf for each of the following reactions: (a) \(\mathrm{Cl}_{2}(g)+2 \mathrm{I}^{-}(a q) \longrightarrow 2 \mathrm{Cl}^{-}(a q)+\mathrm{I}_{2}(s)\) (b) \(\mathrm{Ni}(s)+2 \mathrm{Ce}^{4+}(a q) \longrightarrow \mathrm{Ni}^{2+}(a q)+2 \mathrm{Ce}^{3+}(a q)\) (c) \(\mathrm{Fe}(s)+2 \mathrm{Fe}^{3+}(a q) \longrightarrow 3 \mathrm{Fe}^{2+}(a q)\) (d) \(2 \mathrm{Al}^{3+}(a q)+3 \mathrm{Ca}(s) \longrightarrow 2 \mathrm{Al}(s)+3 \mathrm{Ca}^{2+}(a q)\)
A voltaic cell consists of a strip of cadmium metal in a solution of \(\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}\) in one beaker, and in the other beaker a platinum electrode is immersed in a \(\mathrm{NaCl}\) solution, with \(\mathrm{Cl}_{2}\) gas bubbled around the electrode. A salt bridge connects the two beakers. (a) Which electrode serves as the anode, and which as the cathode? (b) Does the Cd electrode gain or lose mass as the cell reaction proceeds? (c) Write the equation for the overall cell reaction. (d) What is the emf generated by the cell under standard conditions?
Two important characteristics of voltaic cells are their cell potential and the total charge that they can deliver. Which of these characteristics depends on theamount of reactants in the cell, and which one depends on their concentration?
If the equilibrium constant for a one-electron redox reaction at \(298 \mathrm{~K}\) is \(8.7 \times 10^{4}\), calculate the corresponding \(\Delta G^{\circ}\) and \(E_{\text {cell }}^{0}\)
A voltaic cell utilizes the following reaction: $$ 2 \mathrm{Fe}^{3+}(a q)+\mathrm{H}_{2}(g) \rightarrow \rightarrow 2 \mathrm{Fe}^{2+}(a q)+2 \mathrm{H}^{+}(a q) $$ (a) What is the emf of this cell under standard conditions? (b) What is the emf for this cell when \(\left[\mathrm{Fe}^{3+}\right]=2.50 \mathrm{M}\), \(P_{\mathrm{H}_{2}}=0.85 \mathrm{~atm},\left[\mathrm{Fe}^{2+}\right]=0.0010 M\), and the \(\mathrm{pH}\) in both compartments is \(5.00 ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.