Chapter 20: Problem 109
Some years ago a unique proposal was made to raise the Titanic. The plan involved placing pontoons within the ship using a surface-controlled submarine-type vessel. The pontoons would contain cathodes and would be filled with hydrogen gas formed by the electrolysis of water. It has been estimated that it would require about \(7 \times 10^{8} \mathrm{~mol}\) of \(\mathrm{H}_{2}\) to provide the buoyancy to lift the ship (J. Chem. Educ., Vol. \(50,1973,61\) ). (a) How many coulombs of electrical charge would be required? (b) What is the minimum voltage required to generate \(\mathrm{H}_{2}\) and \(\mathrm{O}_{2}\) if the pressure on the gases at the depth of the wreckage ( \(2 \mathrm{mi}\) ) is \(300 \mathrm{~atm} ?\) (c) What is the minimum electrical energy required to raise the Titanic by electrolysis? (d) What is the minimum cost of the electrical energy required to generate the necessary \(\mathrm{H}_{2}\) if the electricity costs 85 cents per kilowatt-hour to generate at the site?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.