Chapter 20: Problem 101
Derive an equation that directly relates the standard emf of a redox reaction to its equilibrium constant.
Chapter 20: Problem 101
Derive an equation that directly relates the standard emf of a redox reaction to its equilibrium constant.
All the tools & learning materials you need for study success - in one app.
Get started for freeA voltaic cell is constructed with two \(\mathrm{Zn}^{2+}-\) Zn electrodes. The two cell compartments have \(\left[\mathrm{Zn}^{2+}\right]=1.8 \mathrm{M}\) and \(\left[\mathrm{Zn}^{2+}\right]=1.00 \times 10^{-2} \mathrm{M}\), respectively. (a) Which electrode is the anode of the cell? (b) What is the standard emf of the cell? (c) What is the cell emf for the concentrations given? (d) For each electrode, predict whether \(\left[\mathrm{Zn}^{2+}\right]\) will increase, decrease, or stay the same as the cell operates.
A voltaic cell that uses the reaction $$ \mathrm{Tl}^{3+}(a q)+2 \mathrm{Cr}^{2+}(a q) \longrightarrow \mathrm{Tl}^{+}(a q)+2 \mathrm{Cr}^{3+}(a q) $$ has a measured standard cell potential of \(+1.19 \mathrm{~V}\). (a) Write the two half-cell reactions. (b) By using data from Appendix \(\mathrm{E}\), determine \(E_{\mathrm{red}}^{\circ}\) for the reduction of \(\mathrm{Tl}^{3+}(a q)\) to \(\mathrm{Tl}^{+}(a q) .\) (c) Sketch the voltaic cell, label the anode and cathode, and indicate the direction of electron flow.
A voltaic cell is constructed with two silver-silver chloride electrodes, each of which is based on the following half-reaction: $$ \mathrm{AgCl}(s)+\mathrm{e}^{-}--\rightarrow \mathrm{Ag}(s)+\mathrm{Cl}^{-}(a q) $$ The two cell compartments have \(\left[\mathrm{Cl}^{-} \mathrm{J}=0.0150 \mathrm{M}\right.\) and \(\left[\mathrm{Cl}^{-}\right]=2.55 M\), respectively. (a) Which electrode is the cathode of the cell? (b) What is the standard emf of the cell? (c) What is the cell emf for the concentrations given? (d) For each electrode, predict whether [Cl \(^{-}\) ] will increase, decrease, or stay the same as the cell operates.
(a) Assuming standard conditions, arrange the following in order of increasing strength as oxidizing agents in acidic solution: \(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cu}^{2+}, \mathrm{Cl}_{2}, \mathrm{O}_{2} .\) (b) Arrange the following in order of increasing strength as reducing agents in acidic solution: \(\mathrm{Zn}, \mathrm{I}^{-}, \mathrm{Sn}^{2+}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Al}\).
A voltaic cell similar to that shown in Figure \(20.5\) is constructed. One electrode compartment consists of an aluminum strip placed in a solution of \(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\), and the other has a nickel strip placed in a solution of \(\mathrm{NiSO}_{4}\). The overall cell reaction is $$ 2 \mathrm{Al}(s)+3 \mathrm{Ni}^{2+}(a q) \longrightarrow 2 \mathrm{Al}^{3+}(a q)+3 \mathrm{Ni}(s) $$ (a) What is being oxidized, and what is being reduced? (b) Write the half-reactions that occur in the two electrode compartments. (c) Which electrode is the anode, and which is the cathode? (d) Indicate the signs of the electrodes. (e) Do electrons flow from the aluminum electrode to the nickel electrode, or from the nickel to the aluminum? (f) In which directions do the cations and anions migrate through the solution? Assume the \(\mathrm{Al}\) is not coated with its oxide.
What do you think about this solution?
We value your feedback to improve our textbook solutions.