Chapter 19: Problem 86
Ammonium nitrate dissolves spontaneously and endothermally in water at room temperature. What can you deduce about the sign of \(\Delta S\) for this solution process?
Chapter 19: Problem 86
Ammonium nitrate dissolves spontaneously and endothermally in water at room temperature. What can you deduce about the sign of \(\Delta S\) for this solution process?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe volume of \(0.100 \mathrm{~mol}\) of helium gas at \(27^{\circ} \mathrm{C}\) is increased isothermally from \(2.00 \mathrm{~L}\) to \(5.00 \mathrm{~L}\). Assuming the gas to be ideal, calculate the entropy change for the process.
(a) How can we calculate \(\Delta S\) foran isothermal process? (b) Does \(\Delta S\) for a process depend on the path taken from the initial to the final state of the system? Explain.
The pressure on \(0.850\) mol of neon gas is increased from \(1.25\) atm to \(2.75\) atm at \(100{ }^{\circ} \mathrm{C}\). Assuming the gas to be ideal, calculate \(\Delta S\) for this process.
(a) Express the second law of thermodynamics as a mathematical equation. (b) In a particular spontaneous process the entropy of the system decreases. What can you conclude about the sign and magnitude of \(\Delta S_{\text {surr }}\) ? (c) During a certain reversible process, the surroundings undergo an entropy change, \(\Delta S_{\text {surr }}=-78 \mathrm{~J} / \mathrm{K} .\) What is the entropy change of the system for this process?
Calculate \(\Delta S^{\circ}\) values for the following reactions by using tabulated \(S^{\circ}\) values from Appendix \(C\). In each case explain the sign of \(\Delta S^{\circ}\). (a) \(\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(g)\) (b) \(\mathrm{K}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{KO}_{2}(s)\) (c) \(\mathrm{Mg}(\mathrm{OH})_{2}(s)+2 \mathrm{HCl}(\mathrm{g}) \longrightarrow \mathrm{MgCl}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)\) (d) \(\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.