Chapter 19: Problem 33
How does the entropy of the system change when (a) a solid melts, (b) a gas liquefies, (c) a solid sublimes?
Chapter 19: Problem 33
How does the entropy of the system change when (a) a solid melts, (b) a gas liquefies, (c) a solid sublimes?
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich of the following processes are spontaneous: (a) the melting of ice cubes at \(10^{\circ} \mathrm{C}\) and 1 atm pressure; (b) separating a mixture of \(\mathrm{N}_{2}\) and \(\mathrm{O}_{2}\) into two separate samples, one that is pure \(\mathrm{N}_{2}\) and one that is pure \(\mathrm{O}_{2}\); (c) alignment of iron filings in a magnetic field; (d) the reaction of sodium metal with chlorine gas to form sodium chloride; (e) the dissolution of \(\mathrm{HCl}(g)\) in water to form concentrated hydrochloric acid?
(a) Using data in Appendix \(C\), estimate the temperature at which the free- energy change for the transformation from \(\mathrm{I}_{2}(s)\) to \(\mathrm{I}_{2}(g)\) is zero. What assumptions must you make in arriving at this estimate? (b) Use a reference source, such as WebElements (www.webelements.com), to find the experimental melting and boiling points of \(\mathrm{I}_{2}\). (c) Which of the values in part (b) is closer to the value you obtained in part (a)? Can you explain why this is so?
Thenormal boiling point of methanol \(\left(\mathrm{CH}_{3} \mathrm{OH}\right)\) is \(64.7^{\circ} \mathrm{C}\), and its molar enthalpy of vaporization is \(\Delta H_{\mathrm{vap}}=\) \(71.8 \mathrm{~kJ} / \mathrm{mol} .\) (a) When \(\mathrm{CH}_{3} \mathrm{OH}(l)\) boils at its normal boiling point, does its entropy increase or decrease? (b) Calculate the value of \(\Delta S\) when \(1.00\) mol of \(\mathrm{CH}_{3} \mathrm{OH}(t)\) is vaporized at \(64.7^{\circ} \mathrm{C}\).
A particular reaction is spontaneous at \(450 \mathrm{~K}\). The enthalpy change for the reaction is \(+34.5 \mathrm{~kJ} .\) What can you conclude about the sign and magnitude of \(\Delta S\) for the reaction?
Consider a system consisting of an ice cube. (a) Under what conditions can the ice cube melt reversibly? (b) If the ice cube melts reversibly, is \(\Delta E\) zero for the process? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.