Chapter 19: Problem 21
(a) How can we calculate \(\Delta S\) foran isothermal process? (b) Does \(\Delta S\) for a process depend on the path taken from the initial to the final state of the system? Explain.
Chapter 19: Problem 21
(a) How can we calculate \(\Delta S\) foran isothermal process? (b) Does \(\Delta S\) for a process depend on the path taken from the initial to the final state of the system? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider what happens when a sample of the explosive TNT (Section 8.8: "Chemistry Put to Work: Explosives and Alfred Nobel") is detonated. (a) Is the detonation a spontaneous process? (b) What is the sign of \(q\) for this process? (c) Can you determine whether \(w\) is positive, negative, or zero for the process? Explain. (d) Can you determine the sign of \(\Delta E\) for the process? Explain.
Cyclohexane \(\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)\) is a liquid hydrocarbon at room temperature. (a) Write a balanced equation for the combustion of \(\mathrm{C}_{6} \mathrm{H}_{12}(l)\) to form \(\mathrm{CO}_{2}(\mathrm{~g})\) and \(\mathrm{H}_{2} \mathrm{O}(l)\). (b) Without using thermochemical data, predict whether \(\Delta G^{\circ}\) for this reaction is more negative or less negative than \(\Delta H^{\circ}\).
Consider the polymerization of ethylene to polyethylene. (Section 12.6) (a) What would you predict for the sign of the entropy change during polymerization ( \(\Delta S_{\text {poly }}\) )? Explain your reasoning. (b) The polymerization of ethylene is a spontaneous process at room temperature. What can you conclude about the enthalpy change during polymerization \(\left(\Delta H_{\text {poly }}\right)\) ? (c) Use average bond enthalpies (Table 8.4) to estimate the value of \(\Delta H_{\text {poly per ethylene }}\) monomer added. (d) Polyethylene is an addition polymer. By comparison, Nylon 66 is a condensation polymer. How would you expect \(\Delta S_{\text {poly }}\) for a condensation polymer to compare to that for an addition polymer? Explain.
Trouton's rule states that for many liquids at their normal boiling points, the standard molar entropy of vaporization is about \(88 \mathrm{~J} / \mathrm{mol}-\mathrm{K} .\) (a) Estimate the normal boiling point of bromine, \(\mathrm{Br}_{2}\), by determining \(\Delta H_{\text {vap }}^{\circ}\) for \(\mathrm{Br}_{2}\) using data from Appendix \(C\). Assume that \(\Delta H_{\text {vap }}^{\circ}\) remains constant with temperature and that Trouton's rule holds. (b) Look up the normal boiling point of \(\mathrm{Br}_{2}\) in a chemistry handbook or at the WebElements web site (www.webelements.com).
Consider the vaporization of liquid water to steam at a pressure of 1 atm. (a) Is this process endothermic or exothermic? (b) In what temperature range is it a spontaneous process? (c) In what temperature range is it a nonspontaneous process? (d) At what temperature are the two phases in equilibrium?
What do you think about this solution?
We value your feedback to improve our textbook solutions.