Chapter 19: Problem 11
(a) Give two examples of endothermic processes that are spontaneous. (b) Give an example of a process that is spontaneous at one temperature but nonspontaneous at a different temperature.
Chapter 19: Problem 11
(a) Give two examples of endothermic processes that are spontaneous. (b) Give an example of a process that is spontaneous at one temperature but nonspontaneous at a different temperature.
All the tools & learning materials you need for study success - in one app.
Get started for freeFor each of the following pairs, indicate which substance possesses the larger standard entropy: (a) \(1 \mathrm{~mol}\) of \(\mathrm{P}_{4}(\mathrm{~g})\) at \(300{ }^{\circ} \mathrm{C}, 0.01 \mathrm{~atm}\), or \(1 \mathrm{~mol}\) of \(\mathrm{As}_{4}(\mathrm{~g})\) at \(300{ }^{\circ} \mathrm{C}, 0.01 \mathrm{~atm}\); (b) \(1 \mathrm{~mol}\) of \(\mathrm{H}_{2} \mathrm{O}(g)\) at \(100^{\circ} \mathrm{C}, 1 \mathrm{~atm}\), or \(1 \mathrm{~mol}\) of \(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\) at \(100^{\circ} \mathrm{C}, 1 \mathrm{~atm} ;\) (c) \(0.5 \mathrm{~mol}\) of \(\mathrm{N}_{2}(g)\) at \(298 \mathrm{~K}, 20\) - \(\mathrm{L}\) volume, or \(0.5 \mathrm{~mol} \mathrm{CH}_{4}(g)\) at \(298 \mathrm{~K}, 20-\mathrm{L}\) volume; (d) \(100 \mathrm{~g}\) \(\mathrm{Na}_{2} \mathrm{SO}_{4}(s)\) at \(30^{\circ} \mathrm{C}\) or \(100 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)\) at \(30^{\circ} \mathrm{C} .\)
Indicate whether \(\Delta G\) increases, decreases, or does not change when the partial pressure of \(\mathrm{H}_{2}\) is increased in each of the following reactions: (a) \(\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)\) (b) \(2 \mathrm{HBr}(g) \longrightarrow \mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g)\) (c) \(2 \mathrm{H}_{2}(g)+\mathrm{C}_{2} \mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(g)\)
(a) The energy of a gas is increased by heating it. Using \(\mathrm{CO}_{2}\) as an example, illustrate the different ways in which additional energy can be distributed among the molecules of the gas. (b) You are told that the number of microstates for a system increases. What does this tell you about the entropy of the system?
(a) Using the heat of vaporization in Appendix \(\mathrm{B}\), calculate the entropy change for the vaporization of water at \(25^{\circ} \mathrm{C}\) and at \(100^{\circ} \mathrm{C}\). (b) From your knowledge of microstates and the structure of liquid water, explain the difference in these two values.
Consider the vaporization of liquid water to steam at a pressure of 1 atm. (a) Is this process endothermic or exothermic? (b) In what temperature range is it a spontaneous process? (c) In what temperature range is it a nonspontaneous process? (d) At what temperature are the two phases in equilibrium?
What do you think about this solution?
We value your feedback to improve our textbook solutions.