Chapter 16: Problem 72
What are two kinds of molecules or ions that commonly function as weak bases?
Chapter 16: Problem 72
What are two kinds of molecules or ions that commonly function as weak bases?
All the tools & learning materials you need for study success - in one app.
Get started for freePredict the products of the following acid-base reactions, and predict whether the equilibrium lies to the left or to the right of the equation: (a) \(\mathrm{O}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons\) (b) \(\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{HS}^{-}(a q) \rightleftharpoons\) (c) \(\mathrm{NO}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons\)
The amino acid glycine \(\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}\right)\) can participate in the following equilibria in water: \(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}=\) \(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{a}=4.3 \times 10^{-3}\) \(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\) \({ }^{+} \mathrm{H}_{3} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}+\mathrm{OH}^{-} \quad K_{b}=6.0 \times 10^{-5}\) (a) Use the values of \(K_{a}\) and \(K_{b}\) to estimate the equilibrium constant for the intramolecular proton transfer to form a zwitterion: \(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH} \rightleftharpoons{ }^{+} \mathrm{H}_{3} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COO}^{-}\) What assumptions did you need to make? (b) What is the pH of a \(0.050 \mathrm{M}\) aqueous solution of glycine? (c) What would be the predominant form of glycine in a solution with pH 13? With pH 1?
Indicate whether each of the following statements is true or false. For each statement that is false, correct the statement to make it true. (a) In general, the acidity of binary acids increases from left to right in a given row of the periodic table. (b) \(\mathrm{In}\) a series of acids that have the same central atom, acid strength increases with the number of hydrogen atoms bonded to the central atom. (c) Hydrotelluric acid \(\left(\mathrm{H}_{2} \mathrm{Te}\right)\) is a stronger acid than \(\mathrm{H}_{2} \mathrm{~S}\) because Te is more electronegative than \(\mathrm{S}\).
Calculate the \(\mathrm{pH}\) of each of the following strong acid solutions: (a) \(8.5 \times 10^{-3} \mathrm{M} \mathrm{HBr}\), (b) \(1.52 \mathrm{~g}\) of \(\mathrm{HNO}_{3}\) in \(575 \mathrm{~mL}\) of solution, \((\mathrm{c}) 5.00 \mathrm{~mL}\) of \(0.250 \mathrm{M} \mathrm{HClO}_{4}\) diluted to \(50.0 \mathrm{~mL}\), (d) a solution formed by mixing \(10.0 \mathrm{~mL}\) of \(0.100 \mathrm{M} \mathrm{HBr}\) with \(20.0 \mathrm{~mL}\) of \(0.200 \mathrm{M} \mathrm{HCl}\)
At the freezing point of water \(\left(0^{\circ} \mathrm{C}\right), K_{w}=1.2 \times 10^{-15}\). Calculate \(\left[\mathrm{H}^{+}\right]\) and \(\left[\mathrm{OH}^{-}\right]\) for a neutral solution at this temperature.
What do you think about this solution?
We value your feedback to improve our textbook solutions.