Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is a strong acid? (b) A solution is labeled \(0.500 \mathrm{M} \mathrm{HCl}\). What is \(\left[\mathrm{H}^{+}\right]\) for the solution? (c) Which of the following are strong acids: \(\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}\) ?

Short Answer

Expert verified
(a) A strong acid is a substance that completely ionizes or dissociates into its ions when dissolved in water, leading to a high concentration of H+ ions. (b) In a 0.500 M HCl solution, \( [\mathrm{H}^{+}] = 0.500 \,\mathrm{M} \) because HCl is a strong acid and dissociates completely. (c) Among HF, HCl, HBr, and HI, the strong acids are HCl, HBr, and HI, while HF is a weak acid.

Step by step solution

01

Define a Strong Acid

A strong acid is a substance that completely ionizes or dissociates into its ions when dissolved in water. This means that all the molecules of the acid will break up into their constituent ions in the solution, leading to a high concentration of H+ ions.
02

Calculate the Concentration of H+ ions for 0.500 M HCl solution

Given the solution is 0.500 M HCl, we know that the concentration of the acid is 0.500 moles per liter. Since HCl is a strong acid, it will completely dissociate into its ions when dissolved in water: \[ \mathrm{HCl \rightarrow H^+ + Cl^-} \] In this case, the concentration of H+ ions will be equal to the concentration of HCl. Therefore, \( [\mathrm{H}^{+}] = 0.500 \,\mathrm{M} \).
03

Identify the Strong Acids

Among the given acids, HF, HCl, HBr, and HI, we need to determine which are strong acids. The general rule of thumb is that the strength of a binary acid (an acid containing hydrogen and a halogen) increases as we move from left to right and top to bottom in the periodic table. Based on this rule: 1. HF - Hydrogen fluoride is a weak acid because it does not dissociate completely in water. The F- ion forms a strong bond with the H+ ions, making it difficult for the acid to release these ions. 2. HCl - Hydrogen chloride is a strong acid because it dissociates completely in water, releasing a high concentration of H+ ions. 3. HBr - Hydrogen bromide is a strong acid because it also dissociates completely in water, releasing a high concentration of H+ ions. 4. HI - Hydrogen iodide is a strong acid because it dissociates completely in water, releasing a high concentration of H+ ions as well. In conclusion, HCl, HBr, and HI are strong acids, while HF is a weak acid.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Hemoglobin plays a part in a series of equilibria involving protonation- deprotonation and oxygenation-deoxygenation. The overall reaction is approximately as follows $$ \mathrm{HbH}^{+}(a q)+\mathrm{O}_{2}(a q) \rightleftharpoons \mathrm{HbO}_{2}(a q)+\mathrm{H}^{+}(a q) $$ where Hb stands for hemoglobin, and \(\mathrm{HbO}_{2}\) for oxyhemoglobin. (a) The concentration of \(\mathrm{O}_{2}\) is higher in the lungs and lower in the tissues. What effect does high \(\left[\mathrm{O}_{2}\right]\) have on the position of this equilibrium? (b) The normal \(\mathrm{pH}\) of blood is \(7.4\). Is the blood acidic, basic, or neutral? (c) If the blood \(\mathrm{pH}\) is lowered by the presence of large amounts of acidic metabolism products, a condition known as acidosis results. What effect does lowering blood \(\mathrm{pH}\) have on the ability of hemoglobin to transport \(\mathrm{O}_{2}\) ?

A hypothetical acid \(\mathrm{H}_{2} \mathrm{X}\) is both a strong acid and a diprotic acid. (a) Calculate the pH of a \(0.050 \mathrm{M}\) solution of \(\mathrm{H}_{2} \mathrm{X}\), assuming that only one proton ionizes peracid molecule. (b) Calculate the \(\mathrm{pH}\) of the solution from part (a), now assuming that both protons of each acid molecule completely ionize. (c) In an experiment it is observed that the \(\mathrm{pH}\) of a \(0.050 \mathrm{M}\) solution of \(\mathrm{H}_{2} \mathrm{X}\) is \(1.27 .\) Comment on the relative acid strengths of \(\mathrm{H}_{2} \mathrm{X}\) and \(\mathrm{HX}^{-}\). (d) Would a solution of the salt \(\mathrm{NaH} \mathrm{X}\) be acidic, basic, or neutral? Explain.

The amino acid glycine \(\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}\right)\) can participate in the following equilibria in water: \(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}=\) \(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{a}=4.3 \times 10^{-3}\) \(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\) \({ }^{+} \mathrm{H}_{3} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}+\mathrm{OH}^{-} \quad K_{b}=6.0 \times 10^{-5}\) (a) Use the values of \(K_{a}\) and \(K_{b}\) to estimate the equilibrium constant for the intramolecular proton transfer to form a zwitterion: \(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH} \rightleftharpoons{ }^{+} \mathrm{H}_{3} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COO}^{-}\) What assumptions did you need to make? (b) What is the pH of a \(0.050 \mathrm{M}\) aqueous solution of glycine? (c) What would be the predominant form of glycine in a solution with pH 13? With pH 1?

Indicate whether each of the following statements is true or false. For each statement that is false, correct the statement to make it true. (a) In general, the acidity of binary acids increases from left to right in a given row of the periodic table. (b) \(\mathrm{In}\) a series of acids that have the same central atom, acid strength increases with the number of hydrogen atoms bonded to the central atom. (c) Hydrotelluric acid \(\left(\mathrm{H}_{2} \mathrm{Te}\right)\) is a stronger acid than \(\mathrm{H}_{2} \mathrm{~S}\) because Te is more electronegative than \(\mathrm{S}\).

In many reactions the addition of \(\mathrm{AlCl}_{3}\) produces the same effect as the addition of \(\mathrm{H}^{+}\). (a) Draw a Lewis structure for \(\mathrm{AlCl}_{3}\) in which no atoms carry formal charges, and determine its structure using the VSEPR method. (b) What characteristic is notable about the structure in part (a) that helps us understand the acidic character of \(\mathrm{AlCl}_{3} ?(\mathrm{c})\) Predict the result of the reaction between \(\mathrm{AlCl}_{3}\) and \(\mathrm{NH}_{3}\) in a solvent that does not participate as a reactant. (d) Which acid-base theory is most suitable for discussing the similarities between \(\mathrm{AlCl}_{3}\) and \(\mathrm{H}^{+}\) ?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free