Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

At \(1000 \mathrm{~K}, K_{p}=1.85\) for the reaction $$ \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g) $$ (a) What is the value of \(K_{p}\) for the reaction \(\mathrm{SO}_{3}(g) \rightleftharpoons \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) ?\) (b) What is the value of \(K_{p}\) for the reaction \(2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)\) ? (c) What is the value of \(K_{c}\) for the reaction in part (b)?

Short Answer

Expert verified
(a) For the reverse reaction, \(K_p' = 0.54\). (b) For the doubled reaction, \(K_p'' = 3.4225\). (c) For the doubled reaction, \(K_c = 0.281\).

Step by step solution

01

(a) Find the Ka for reverse reaction

To find the equilibrium constant for the reaction \(\mathrm{SO}_{3}(g) \rightleftharpoons \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)\), we need to invert the given reaction. The \(K_p\) for the inverse reaction is the reciprocal of the given \(K_p\): $$ K_p' = \frac{1}{K_p} $$ For the given reaction, we have \(K_p = 1.85\), so: $$ K_p' = \frac{1}{1.85} = 0.54 $$ Therefore, the \(K_p\) for the reaction \(\mathrm{SO}_{3}(g) \rightleftharpoons \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)\) is 0.54.
02

(b) Find the Ka for reaction with doubled coefficients

To find the \(K_p\) for the reaction \(2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)\), we must multiply the given reaction by 2. The relation between the initial \(K_p\) and the new \(K_p\) for a reaction multiplied by a factor \(n\) is: $$ K_p'' = (K_p)^n $$ In our case, we have \(K_p = 1.85\) and we are doubling the reaction (\(n=2\)), so: $$ K_p'' = (1.85)^2 = 3.4225 $$ Therefore, the \(K_p\) for the reaction \(2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)\) is 3.4225.
03

(c) Find the Kc for the reaction in part (b)

The relation between \(K_p\) and \(K_c\) for a reaction is: $$ K_p = K_c (RT)^{\Delta n} $$ where \(R\) is the ideal gas constant, \(T\) is the temperature in Kelvin, and \(\Delta n\) is the change in moles of gas for the reaction. For the reaction \(2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)\), we have \(\Delta n = 2 - (2 + 1) = -1\). The temperature is given as \(1000\,\mathrm{K}\), and the gas constant \(R=0.0821\, \mathrm{L\,atm\,K^{-1}mol^{-1}}\). So, we can use this information to find \(K_c\): $$ K_c = \frac{K_p}{(RT)^{\Delta n}} $$ with \(K_p = 3.4225\), \(R = 0.0821\,\mathrm{L\,atm\,K^{-1}mol^{-1}}\), \(T=1000\,\mathrm{K}\), and \(\Delta n=-1\), so: $$ K_c = \frac{3.4225}{(0.0821\cdot1000)^{-1}} = 3.4225\cdot0.0821 = 0.281 $$ Thus, the \(K_c\) for the reaction \(2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)\) is 0.281.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At \(100^{\circ} \mathrm{C}\) the equilibrium constant for the reaction \(\mathrm{COCl}_{2}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)\) has the value \(K_{c}=\) \(2.19 \times 10^{-10}\). Are the following mixtures of \(\mathrm{COCl}_{2}, \mathrm{CO}\), and \(\mathrm{Cl}_{2}\) at \(100^{\circ} \mathrm{C}\) at equilibrium? If not, indicate the direction that the reaction must proceed to achieve equilibrium. (a) \(\left[\mathrm{COCl}_{2}\right]=2.00 \times 10^{-3} \mathrm{M}, \quad[\mathrm{CO}]=3.3 \times 10^{-6} \mathrm{M}\) \(\left[\mathrm{Cl}_{2}\right]=6.62 \times 10^{-6} M ; \quad\) (b) \(\left[\mathrm{COCl}_{2}\right]=4.50 \times 10^{-2} M\) \([\mathrm{CO}]=1.1 \times 10^{-7} \mathrm{M},\left[\mathrm{Cl}_{2}\right]=2.25 \times 10^{-6} \mathrm{M} ;\) (c) \(\left[\mathrm{COCl}_{2}\right]=\) \(0.0100 M,[\mathrm{CO}]=\left[\mathrm{Cl}_{2}\right]=1.48 \times 10^{-6} \mathrm{M}\)

\(\mathrm{NiO}\) is to be reduced to nickel metal in an industrial process by use of the reaction $$ \mathrm{NiO}(s)+\mathrm{CO}(g) \rightleftharpoons \mathrm{Ni}(s)+\mathrm{CO}_{2}(g) $$ At \(1600 \mathrm{~K}\) the equilibrium constant for the reaction is \(K_{p}=6.0 \times 10^{2}\). If a CO pressure of 150 torr is to be employed in the furnace and total pressure never exceeds 760 torr, will reduction occur?

A mixture of \(0.2000 \mathrm{~mol}\) of \(\mathrm{CO}_{2}, 0.1000 \mathrm{~mol}\) of \(\mathrm{H}_{2}\), and \(0.1600 \mathrm{~mol}\) of \(\mathrm{H}_{2} \mathrm{O}\) is placed in a 2.000-L vessel. The following equilibrium is established at \(500 \mathrm{~K}\) : $$ \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) $$ (a) Calculate the initial partial pressures of \(\mathrm{CO}_{2}, \mathrm{H}_{2}\) and \(\mathrm{H}_{2} \mathrm{O} .\) (b) At equilibrium \(P_{\mathrm{H}_{2} \mathrm{O}}=3.51 \mathrm{~atm}\). Calculate the equilibrium partial pressures of \(\mathrm{CO}_{2}, \mathrm{H}_{2}\), and \(\mathrm{CO}\). (c) Calculate \(K_{n}\) for the reaction.

When the following reactions come to equilibrium, does the equilibrium mixture contain mostly reactants or mostly products? (a) \(\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g) ; K_{c}=1.5 \times 10^{-10}\) (b) \(2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g) ; K_{p}=2.5 \times 10^{9}\)

Consider the equilibrium $$ \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \operatorname{NOBr}(g) $$ Calculate the equilibrium constant \(K_{p}\) for this reaction, given the following information (at \(298 \mathrm{~K}\) ): $$ \begin{aligned} 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) & \rightleftharpoons 2 \mathrm{NOBr}(g) & K_{c}=2.0 \\ 2 \mathrm{NO}(g) & \rightleftharpoons \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) & K_{c}=2.1 \times 10^{30} \end{aligned} $$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free