Chapter 14: Problem 83
Explain why rate laws generally cannot be written from balanced equations. Under what circumstance is the rate law related directly to the balanced equation for a reaction?
Chapter 14: Problem 83
Explain why rate laws generally cannot be written from balanced equations. Under what circumstance is the rate law related directly to the balanced equation for a reaction?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe activation energy of a certain reaction is \(65.7 \mathrm{~kJ} / \mathrm{mol}\) How many times faster will the reaction occur at \(50^{\circ} \mathrm{C}\) than at \(0^{\circ} \mathrm{C}\) ?
Dinitrogen pentoxide \(\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)\) decomposes in chloroform as a solvent to yield \(\mathrm{NO}_{2}\) and \(\mathrm{O}_{2}\). The decomposition is first order with a rate constant at \(45^{\circ} \mathrm{C}\) of \(1.0 \times 10^{-5} \mathrm{~s}^{-1}\). Calculate the partial pressure of \(\mathrm{O}_{2}\) produced from \(1.00\) L of \(0.600 \mathrm{M} \mathrm{N}_{2} \mathrm{O}_{5}\) solution at \(45^{\circ} \mathrm{C}\) over a period of \(20.0 \mathrm{~h}\) if the gas is collected in a 10.0-L container. (Assume that the products do not dissolve in chloroform.)
As described in Exercise \(14.37\), the decomposition of sulfuryl chloride \(\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}\right)\) is a first-order process. The rate constant for the decomposition at \(660 \mathrm{~K}\) is \(4.5 \times 10^{-2} \mathrm{~s}^{-1}\). (a) If we begin with an initial \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) pressure of 375 torr, what is the pressure of this substance after 65 s? (b) At what time will the pressure of \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) decline to one-tenth its initial value?
(a) Explain the importance of enzymes in biological systems. (b) What chemical transformations are catalyzed (i) by the enzyme catalase, (ii) by nitrogenase?
(a) Consider the combustion of ethylene, \(\mathrm{C}_{2} \mathrm{H}_{4}(g)+\) \(3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) .\) If the concentration of \(\mathrm{C}_{2} \mathrm{H}_{4}\) is decreasing at the rate of \(0.025 \mathrm{M} / \mathrm{s}\), what are the rates of change in the concentrations of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O} ?\) (b) The rate of decrease in \(\mathrm{N}_{2} \mathrm{H}_{4}\) partial pressure in a closed reaction vessel from the reaction \(\mathrm{N}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)\) is 63 torr \(/ \mathrm{h}\). What are the rates of change of \(\mathrm{NH}_{3}\) partial pressure and total pressure in the vessel?
What do you think about this solution?
We value your feedback to improve our textbook solutions.